微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > PLC分级递阶控制在变电站综合控制系统中的应用

PLC分级递阶控制在变电站综合控制系统中的应用

时间:10-13 来源:本站整理 点击:

息进行综合处理,给出最优解决方案。同时,控制级计算机可以通过局域网与其它计算机相连,既可以实现资源共享,又可以使不同系统在统一调度下,协调工作,减少资源浪费。下位?PLC?或远程工作站分散后进行连网,这样,执行级各控制器件就可在现场实现分散控制,并通过网络将信息传递到上位控制机,使上位机进行集中管理。即使下位PLC或远程工作站个别设备出现故障,也不会导致整个系统的瘫痪,整体性能好,运行可靠。

3?PLC分级递阶控制系统在变电站综合控制系统中的应用

    当前,已有变电站将PLC引入控制系统中,但是仅仅利用PLC对开关量进行控制,如对有载调压变压器分接开关的调节,并联补偿电容器的投切等。远没有充分发挥PLC的强大功能。

3.1在变电站综合控制系统中PLC分级递阶控制系统的结构

    利用本文上面提到的分级递阶控制结构,我们可以按照三级机构设计变电站综合控制系统。

    (1)组织级的设计

    组织级是本系统的最高级,承担着最优决策的功能。当前变电站综合控制大部分仍是按照传统的九区控制方法,利用电压和无功功率双参数将变电站运行状态分为九个区,根据各个区所对应的控制方案进行调节。但是,在该控制系统中,无功调节判据是一个与电压无关的平行于电压坐标轴的固定边界,没有充分考虑无功调节与电压调节相互间的协调关系。根据“保证电压合格,无功基本平衡,尽量减少调节次数”的变电站电压和无功综合调节的基本原则,无功调节边界应当是一个受电压状态影响,且在一定范围内服务于电压调节的模糊边界。因此,我们对传统的控制策略也作了改进,引入了无功调节判据,提出了模糊边界的无功调节。基于电压与无功的相互影响,对电容器组的投切判据建立如下数学模。

式中:U0为标准电压;Q0为每组电容器的容量;U为电压实时值;Q为实时功率值;α1,α2为权重系数。

    根据上面推导出的数学模型,可以得到修正后的电压?无功双参数调节的模糊边界,如图2所示。

 

 

 

    我们利用计算机进行模糊推理,得到最优控制策略,形成控制规则表,将其传递到下级进行协调控制。同时该级为操作人员提供了良好的人机界面,将电压、电流、有功、无功等信息以曲线图、柱状图等形式实时反映出来,并且在出现异常情况时可进行声光报警,使操作人员可以及时全面的了解系统运行情况,并可对生产过程进行调节和控制。该级计算机装有专家知识库,在变电站内出现故障时,可在专家系统的引导下,尽快解除故障。定时召唤打印功能和无人抄表功能可以方便的使变电站综合控制实现无人职守。根据各变电站的实际运行情况和不同时段的电压、无功波动情况,还可以通过控制级计算机设定电压整定值和灵敏度参数,而且根据控制要求还可以由功能按钮直接对有载调压变压器的分接头和补偿电容进行控制,以进一步增加控制的灵活性。

    该级的计算机还可以通过Ethernet、ARCNET等局域网进行联网,实现信息共享,对某一区域进行综合控制,这样既可以从整体上进行控制,更有利于提高整个地区的供电质量,还可以减少资源的浪费。

        (2)监控/协调级的设计

 

该级的主要功能是完成组织级下达的命令,负责执行级PLC的协调工作。该级可由计算机或主PLC构成,随着PLC性能价格比的不断提高,一般变电站的监控/协调级都可由主PLC承担。在变电站中,多变压器的同步调节主要由该级负责,同时它还负责执行级现场信息的传输,在整个分级递阶控制中起着桥梁作用。

    在小型的变电站中,为了节省投资,也可以将组织级和监控/协调级集成在一个高性能的计算机中。
    (3)执行级的设计

    执行级的智能程度最低,但控制精度和实时性要求最高。由于变电站电磁干扰严重,常规的控制器件难以达到精确控制,因而可靠性高、实时性好、性能价格比高的PLC是最佳选择。由于PLC与计算机联网,可以将最优控制结果下载到PLC,利用PLC实现各种最优控制。对于主要器件如主变压器,可以采用PLC的冗余技术更进一步提高可靠性。所谓PLC冗余技术即正常运行时,一台PLC作为主PLC进行控制,其它的PLC作为备用,监视系统运行。当主PLC发生故障时,由PLC协调器件指定另外一台PLC作为主PLC,控制系统运行,将有故障的PLC换下维修。由于PLC发生故障的几率十分小,采用冗余技术后的故障率几乎为零。

    现在的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top