浅析什么是智能边缘计算AI-EC
5G时代的进程一直在有条不紊的来临,随着5G技术的智能边缘计算也成为了人们追求的主题,所谓的智能边缘计算AI-EC是指在5G边缘(可理解在基站端)提供各类AI推理算法资源和相应的可编程AI计算资源的公共平台。
2017年9月初华为透露:首款搭载AI芯片的商务手机将于10月发布并提出:Mobile AI=On_Device AI + Cloud AI。无独有偶,一周后苹果公司也发布了搭载A11可以人脸识别的史上最贵手机。那么On_Device AI将不可避免吗?本文作者提出了另外一种选项供参考:Mobile AI=5G_Device + AI-EC。
AI-EC其中的算法资源,主要以客观世界目标的视觉识别,音频识别以及自然语言处理为代表的通用类的AI推理算法软件。而另一个可编程AI计算资源是由以GPU及Tensor RT为代表的软硬件服务器支撑平台,用以承载和加速前者AI算法的推理计算,也可承载在线弱监督学习的训练或其他GPU应用。这种AI-EC平台所提供的AI推理服务如同在线函数库调用一样,你给它视频或图片,它返给你识别结果;你给他中文语音,它给你翻译成目标语言。今后亿万个物联网终端,智能穿戴等5G终端不必非得安装智能芯片及相关软件同样可以拥有智能,因为通用的AI推理功能已从终端剥离并转移到AI-MC平台上。(说白了就是智能产业将被纵向分割:会做终端的专做终端,懂算法的专做算法,5G将成为产业应用上下游的总线纽带)
一、AI-EC的架构
二、AI-EC的功能
深度学习的推理服务。雾智能终端将视频,音频,语言等上传至AI-EC 平台,由其平台上相关已训练好的推理模块进行推理,然后将结果反馈给雾智能终端。
高性能计算池服务。很多对GPU依赖的应用可以不受时间、空间及移动速度的限制。例如现场指纹推理,哈希算法(对加解密和区块链的支撑),快速傅立叶变换,蒙特卡罗等等。
"串流"云游戏服务。5G时代的云游戏市场将会进一步增大,玩家不必拥有独立显卡,也可以通过"串流"黑科技来感受类似效果的云游戏。AI-EC的云游戏模块可以根据玩家的操控将游戏效果渲染成视频流下推给玩家的5G终端,玩家不受地点限制可以在高铁地铁上。例如GeForce Now云游戏,其官方建议20Mbps则可实现720P画质、60fps帧速;除此之外,网络时延需小于60ms。
视频业务审核服务。5G时代手机户外现场直播重大活动或事件将成为可能。而直播视频中是否有不合法的内容(如暴力,色情,极端宗教及敏感议题等)必须借助AI来实施审核并采取相应措施。
VR等实时渲染服务。随着渲染需求的不断加大以及VR/AR等应用的日益普及,坐在飞速行驶的高铁上也可以感受VR,可以即时渲染出个性化产品设计效果,装修设计效果等,影视短片的后期效果等。例如可以即时渲染出女士本人穿上网购服装的效果。
三、AI-EC的特点
a. 网络时延优势:边缘位置优势保证了时间敏感的实时类应用的AI推理时延要求。
b. 网络分布优势:AI-EC让广泛分布的推理申请在末端就得到结果,既减少了网络流量,又降低了云中心集中推理的计算压力。例如上万个监控视频的推理需求,动态应急布设监控及无人机监控等。
c. 智能终端减负:物联网、智能穿戴等终端的体积,重量,功耗,成本以及价格都将因此而降低,同时也降低了终端的研发门槛,有利于5G终端的广泛普及。
d.产业布局灵活:人工智能的各种算法发展日新月异,组合千变万化,研发的人员及硬件成本越来越高,这些将由AI-EC营运商解决。AI应用产业被纵向分解成算法服务商和终端供应商。
e. 非商业属性:AI-EC平台一般将由国有控股的电信运营商来承建,其公共属性有利于将人工智能服务作为像电力、天然气和通讯网络一样的市政设施供应给千家万户。有利于政府、教育、医疗,军工等公共机构充分利用AI-EC平台上的算法资源和计算资源,有利于相关部门对人工智能产业发展进行规划,引导,管理及法律法规制定等,有利于将5G与AI-EC整体打包像高铁一样输出给其它国家。
人脸识别鉴权技术:目前我国公安部相关研究所已立项"多维身份可信认证系统",当海关、机场,车站,酒店,银行以及特殊单位等机构需要鉴权时,应有统筹法律法规约束。
医学影像辅助诊疗:同样应由国家相关部门在大数据标注与训练,隐私保护,相关识别技术的商业化与非商业化推广及医院相关区域的AI-EC覆盖等,应有统筹法律法规约束。
其它公共事业的AI部署:如AI教学、AI职业培训、科研院所的公用计算资源部署、AI市政公共设施、智能交通管理、AI家庭设施等部署,管理,法律法规约束等。
四、AI-EC带来的选择
a. 雾智能终端与
人工智能 相关文章:
- 解密英伟达Tesla P100、GP100、DRIVE PX2平台(04-26)
- 人工智能处理器三强Intel/NVIDIA/AMD谁称霸?(07-23)
- 2016年人工智能与深度学习领域的十大收购(07-26)
- 人工智能实现的流派 FPGA vs. ASIC看好谁?(08-27)
- IBM沃森能否在人工智能领域突破重围?(09-19)
- 英特尔与高通将在汽车芯片市场再次对决(上)(10-03)