微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波器件设计 > 多端口闭路光环行器的设计

多端口闭路光环行器的设计

时间:03-10 来源:互联网 点击:

1. 引言与背景

光环行器在波分复用网络中基于光纤光栅(FBG)的应用中具有重要作用,诸如基于多端口环行器

<script language=JavaScript src="http://www.cnii.com.cn/adver/adver.php?fdSelectClass=12&fdAdverClassID=1&fdAdverAttrId=1&fdSelectPost=231&fdStyle=2"></script>
与光纤光栅的光上下路(OADM)系统[1] [2],可重构和双向传输光上下路[3],以及基于光环行器与光纤光栅组合的色散补偿系统[4]等;此外,光环行器与光放大器组合应用也有相关实验报道[5] [6]。然而现有的大部分光环行器都无法实现闭路功能,也即对于一个n端口的环行器,能将端口1输入的光束由端口2输出,端口2输入光从端口3输出,直至端口(n-1)输入至端口n输出,但从端口n输入光束则无法获得输出,而闭路光环行器则可让端口n输入光束由端口1输出,从而实现光束的完全循环功能。图1描述了有n个端口的闭路光环行器的通光功能。闭路光环行器在双向传输及循环色散补偿系统中具有重要作用,图2为其典型应用之一,在该方案中,FBG 1 反射由端口1输入的光信号,对之进行色散补偿,而对于从端口3输入的光束则透明传输;FBG 2 的功能刚好与FBG 1 相反。采用此方案,由端口1及端口3输入的信号都能无阻塞地传送至对面且获得所需的色散补偿。

\

本文中我们提出了一种设计闭路环行器的新方法,采用该方法设计的环行器的端口数目可以根据需要而任意设计,根据端口数目为奇数及偶数我们设计了两种组装方案,并相应分析了相关的实现原理及装配结构。分析表明该方案有效实现光的闭路环行功能,并具有优良的光学参数性能。

2. 结构与原理

图3(a)、(b)分别对应于我们所提出的偶数端口及奇数端口环行器的结构设计示意图。一个典型的偏振无关光环行器通常由三个功能块组成,依次是分/合光模块(D&M)、平行与垂直旋转模块(P&O)以及环行导光模块(BCC)组成[8]。其中,分/合光模块在输入端将一束光分成偏振态相互垂直的两束线偏振光,而在接收端则将两束偏振态垂直的线偏振光合成为一束光输出;平行与垂直旋转模块将两束偏振态垂直的线偏振光旋转为偏振态相互平行的线偏振光,或将两束偏振态相互平行的光束旋转为偏振态垂直的线偏振光,但不改变光束的传播方向;环行导光模块则根据光束输入时的位置、方向及偏振态的区别而实现各个输入光束环行传输功能。在我们的设计结构中,分/合光模块由双折射晶体构成,一般采用具有较大双折射系数的材料如钒酸钇或金红石晶体组装,也可采用渥拉斯顿棱镜或PBS等替代;平行与垂直旋转模块采用两片光轴夹角为45度的半波片(WP)外加一片法拉第旋光片(FR)构成,两片半波片能将两束偏振态垂直的线偏振光旋成偏振态相互平行,或者将两束偏振态平行的线偏振光旋成偏振态垂直的光束,而法拉第旋光片由于其旋光方向与光束传播方向无关,由此提供非互易性以实现往返光束的偏振态不同;环行导光模块在两种设计中结构有所不同,在偶数端口设计中由一个双折射晶体(BC)及一个偏振光分束器(PBS)构成,而在奇数端口器件设计中环行导光模块由一个双折射晶体、一个半波片以及两个斜角片(WG)组成,如图3(a)及(b)所示。

\

为了对环行器中的光路传输及偏振态转变作一详细说明,我们采用简化模型进行分析,如图4为简化的偶数端口环行器,对应为4端口的设计结构;图5为3端口设计,对应于简化的奇数端口环行器。其余的结构都可以在此简化模型的基础上扩展而获得。由图4可知,光束通过D&M模块(双折射晶体)后分开为偏振态相互垂直的两束线偏振光,之后通过P&O模块成为偏振态平行的两束光,经过BCC模块后,根据其偏振态、传输方向及位置的不同而获得不同的输出方位。由图4(b)可知,D&M模块对往返光进行可逆变化。而P&O模块则不然,对沿z轴正向传输的偏振态垂直的两束线偏振光,经过P&O后变成平行于z轴的的线偏振光,而对于逆z轴正向传输的偏振态垂直的两束光,出射后则成为平行于x轴的线偏振光。BCC模块根据入射光的位置、方向及偏振态而改变光束状态,如图4(b),对于沿z轴正向传输的偏振方向平行于z轴的光束,其出射位置及偏振态不变,而对于逆z轴正向传输的偏振方向平行于x轴的光束,出射偏振态不变,但出射位置则与入射点不同,由此而实现光路循环功能。对于3端口的设计而言,与四端口环行器光路结构的主要区别在于BCC模块的不同,如图5(a)所示,3端口设计的BCC由一个双折射晶体、一个半波片(WP)及两个斜角片(WG)组成,这里的两个斜角片是为了实现光路反转,也即端口3至端

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top