微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 详解多芯片LED封装特点与技术

详解多芯片LED封装特点与技术

时间:10-11 来源:互联网 点击:

光LED 光源模块,他们将荧光粉层涂敷在出光板上,提高了出光的均匀性和荧光粉的稳定性。

  同时将阵列化互连方式与电流降额使用相结合,减少了传统串联和并联连接方法时一个芯片损坏对其他芯片工作状态的影响的缺陷,提高了系统可靠性,这种封装结构达到了简化工艺的目的。

  总体上,不同专利所描述的集成封装的结构模式和原理都大同小异,差别主要在于所选的焊接方式、反光腔内壁的涂覆材料以及所选基板的不同,改变集成封装的思维方式,使集成封装在白光LED封装中得到更广泛的应用。

  (2)散热处理

  集成封装技术虽然是封装的主要方向之一,但是散热问题却一直是集成封装技术的瓶颈,我们知道通常LED 高功率产品其光电转换效率为20%,剩下80%的电能均转换为热能,处理好散热问题,将会使LED 光源的质量上一个台阶。

  集成封装的热处理思路目前主要集中在:

  选择导热系数高的基板;

  缩短热传递的距离;

  优化固晶技术等方面。

  蚁泽纯从芯片的工作数量以及芯片的集成密度等方面分析发现集成封装的多芯片白光LED 结温随着集成芯片数量的增加而增长,其发光效率随着集成芯片数量的增加呈减小趋势,因此芯片的数量及集成密度在集成封装技术的应用中也是一个很重要的影响因素。

  在公布号为CN 102042500 A专利中针对光源模块的散热性能提出改善方案,即在基板中心位置增加一柱形导热装置作为散热区,使光源模块在发光时,各发光芯片所产生的热可以更快速的由基板发散。

  在散热基板材料的选择中,最被看好的是陶瓷基板,陶瓷基板具有散热性佳、耐高温与耐潮湿等优点,逐渐成为大功率LED 散热基板的首选材料。程治国等以陶瓷基板(氧化铝和氮化铝,厚度0.5~1.0mm)为散热基板,申请了发明专利。

  在专利中采用陶瓷基板金属化技术,共晶焊接技术进行LED 集成封装,导热性能大大改善,采用集成封装可以使光源功率达到200W。

  Luqiao Yin研发出一种表层为LTCC,底层为AlNx的陶瓷基板,经集成封装测试发现长期点亮后PN 结温度只有70. 8℃,经ANSYS 模拟观察到跟陶瓷基板相连的铝热沉温度只有39. 3℃,当驱动电流达到500 mA 时,也只有41. 0℃。

  (3)光学设计

  大功率LED 照明零组件在成为照明产品前,一般要进行两次光学设计。

  一次光学设计的目的是尽可能多的取出LED 芯片中发出的光。

  二次光学设计的目的则是让整个灯具系统发出的光能满足设计需求。

  集成封装中由于存在多颗芯片,因此对于二次光学系统设计的要求更高!

  为了实现道路照明所要求的矩形光斑分布,刘红等依据光源特性和路面的光斑分布,通过折射定律建立透镜母线的斜率方程,根据该方程设计了用于矩形光斑分布的LED 路灯透镜,采用正交优化方法,利用Light Tools 软件对所设计的透镜光学系统进行仿真比较研究,得到了一个矩形光斑分布的光学透镜。

  仿真结果表明,该透镜光学系统在高度为10m 的照射条件下,照射面积为40m&TImes;10m 的矩形光斑,均匀度为0.31。对有光斑尺寸要求的LED路灯透镜来说,该方法提供了一种简单有效的设计途径。

  宋春发等人设计出一种用于多颗芯片集成封装的大功率LED 透镜及其灯具。

  透镜包括入光面和出光面,还包括环形反射面,所述出光面与反射面相贯,所述入光面为二次曲面,其曲面系数为:K =-1. 2~-1.5,R= 35~41mm,所述出光面为平面,所述反射面为二次曲面,其曲面系数为:K =-0. 24~-0. 26,R= 23~29mm。

  这种设计中LED 中心区域的光线经出光面出射,LED边缘的光线经环形反射面出射,可以避免由于透镜的视场角有限而损失LED光能,从而最大限度的收集LED发出的光线,提高灯具的发光效率。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top