一文读懂计算机视觉和机器人视觉
计算机视觉与机器人视觉有很多的相似之处,两者的基本理论框架、底层理论、算法等是相似的,但计算机视觉与机器人视觉研究的最终目的不同:前者主要研究视觉检验,精度要求高,速度不是主要考虑的问题;而机器人视觉主要研究在视觉引导下机器人对环境的作用,有实时性的要求。
1.计算机视觉的概念
计算机视觉就是用各种成像系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。但在实现最终目标以前,人们努力的中期目标是建立一种视觉系统,这个系统能依据视觉敏感和反馈的某种程度的智能完成一定的任务。(这里要指出的一点是在计算机视觉系统中计算机起代替人脑的作用,但并不意味着计算机必须按人类视觉的方法完成视觉信息的处理。计算机视觉可以而且应该根据计算机系统的特点来进行视觉信息的处理、指导。)
2.计算机视觉的发展
视觉研究是在Roberts之前都是基于二维的,而且多数是采用模式识别的方法完成分类工作的。Roberts首先用程序成功地对三维积木世界进行解释,在之后类似的研究中,Huffman。Clowes以及Waltz等人对积木世界进行了研究并分别解决了由线段解释景物和处理阴影等问题。积木世界的研究反映了视觉早期研究中的一些特点,即从简化的世界出发进行研究。这些工作对视觉研究的发展起了促进作用,但对于稍微复杂的景物便难以奏效。
20世纪70 年代中期,以Marr,Barrow和Tenebaum等人为代表的一些研究者提出了一整套视觉计算的理论来描述视觉过程,其核心是从图像恢复物体的三维形状。在视觉研究的理论上,以Marr的理论影响最为深远。其理论强调表示的重要性,提出要从不同层次去研究信息处理的问题。对于计算理论和算法实现,他又特别强调计算理论的重要性。这一框架虽然在细节上甚至在主导思想上还存在不完备的方面,许多方面还有很多争议,但至今仍是目前计算机视觉研究的基本框架。
进入80年代中后期,随着移动式机器人等的研究,视觉研究与之密切结合,大量引入了空间几何的方法以及物理知识,其主要目标是实现对道路和障碍的识别处理。这一时期引入主动视觉的研究方法,使用了距离传感器,并采用了多传感器融合等技术。
3.计算机视觉研究存在的问题
世界各国的研究者们按照Marr提出的基本理论框架,对计算机视觉系统的各个研究层次进行了大量的研究,并提出了相应的解决方法,但总的来讲,这些方法都存在着一些问题,或缺乏通用性,或抗干扰能力差,或存在多解性,其原因如下:一是计算机视觉是一个逆问题,即输入图像为二维图像的灰度,它是三维物体几何特征、光照、物体材料表面性质、物体的颜色、摄像机参数等许多因素的函数。由灰度反推以上各种参数是逆问题,而这些问题大都是非线形的,问题的解不具有唯一性,而且对噪声或离散化引起的误差都极其敏感;另一个原因是Marr的视觉系统框架是一个自上而下的、模块的、单向的、数据驱动型的结构。神经生理学的深入研究表明,这种结构与人的视觉系统还有很大差距,生物视觉系统的认知过程是一种与外界交互作用的有目的、主动性过程,而不仅仅是一种被动式的反应。
4.机器人视觉的概念
机器人视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。2.机器人视觉主要研究用计算机来模拟人的视觉功能从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。
人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到视网膜上,人们按照投影到视网膜上的二维成像来对该物体进行三维理解。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像(灰度阵列)到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。
5.机器人视觉的发展
机器人视觉系统按其发展可分为三代。第一代机器人视觉的功能一般是按规定流程对图像进行处理并输出结果。这种系统一般由普通数字电路搭成,主要用于平板材料的缺陷检测。第二代机器人视觉系统一般由一台计算机,一个图像输入设备和结果输出硬件构成。视觉信息在机内以串行方式流动,有一定学习能力以适应各种新情况。第三代机器人视觉系统是目前国际上正在开发使用的系统。采用高速图像处理芯片,并行算法,具有高度的智能和普通的适应性,能模拟人的高度
- 计算机视觉新时代,硬件性能极限考验如何破?(07-11)
- Atmel针对工业机器视觉应用推出快速CMOS相机(10-22)
- 工业机器视觉系统市场迅猛发展,行业应用新视点逐步扩大(11-06)
- 基于DSP和FPGA的机器视觉系统设计与实现(03-07)
- Xilinx用于工业自动化的机器视觉解决方案(11-30)
- Xilinx多协议机器视觉摄像机参考设计(12-01)