微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 汽车紧固件行业发展前景展望

汽车紧固件行业发展前景展望

时间:10-02 来源:未知 点击:

应变速率、大应变下,进行稍高于Ar3的形变,可得到2μm以下的超细铁素体,从而对其周围未转变奥氏体的分解方式产生影响,表现为奥氏体在随后冷却或退火过程向退化珠光体加速转变并缓慢粗化。对于珠光体含量较高的中碳钢,通过控制轧制实现奥氏体的非平衡化,再通过随后的控制冷却就有可能获得球状的渗碳体,而非片状渗碳体,从而实现了在线软化处理。

  传统的高速线材轧机难以实现在线软化处理,原因是不能够进行低温大变形量控制轧制以及控制冷却线过短。

  日本神户制钢公司第7线材厂于1999年对设备进行改造,增加了超重载能力的减定径机组并将斯太尔摩风冷运输线从原来的48 m增加到了100 m,2001年改造后的线材轧机成功实现在线软化处理,生产出的SCM435冷镦钢盘条强度在800 MPa以下,低于传统的900 MPa以上。

  国内马钢对高强度冷镦钢的在线软化处理工艺研究较早,其生产的SWRCH35K - M免退火钢用户可直接进行拉拔冷镦生产。安阳钢厂高速线材生产线采用摩根6代轧制技术、斯太尔摩风冷运输线长105 m,经过多年摸索,生产的SCM420-440系列高强度冷镦钢也达到了在线软化处理工艺要求的效果,以SCM435为例,其电解夹杂总质量分数平均为0.005 8%,中心疏松和中心缩孔级别为0.5级,其热轧态组织主要为铁素体+珠光体,总脱碳层深度小于0.15 mm,φ6.5~16mm各规格盘条晶粒度级别均在8级以上,硬度HRB值为90左右。用户可实施9 h的简化退火工艺,比采用30 h以上的球化退火工艺处理时间减少了2/3以上。

  3.2.3、硼钢

  硼钢的特点:

  具有良好的冷变形能力,可以省去冷变形前的退火处理;

  淬火脆性倾向低,可以用水淬;

  微量硼的加人可部分替代昂贵的合金元素的添加;

  低碳钢的延迟断裂敏感性相对较低。

  硼钢成分设计的基本原则是降低含碳量,改善钢的冷变形能力;加入质量分数为0.0005% ~0.003 5%的微量硼以弥补因降碳造成的强度和淬透性的损失。另外还可根据需要加入Cr,Mn,TI等合金元素,进一步提高淬透性。

  通常8.8级螺栓用与SAE10B23相当的低碳含锰系硼钢制造,9.8级和10.9级螺栓用与SAE10B35相当的中碳含锰系硼钢制造,或者用与ML40Cr,ML35CrMo 相当的ML35MnB,ML370B硼钢制造。但由于硼钢的抗回火软化能力小,其回火温度要比SCM435,ML40Cr低60 ~ 80,因此用硼钢制造的10.9级高强度螺栓的延迟断裂敏感性大。

  国内解决这一问题的途经是通过提高硼钢中V含量,同时降低P,S和C含量,从而改善硼钢的综合力学性能。国内于1992年成功研制了ML15MnVB,ML20MnVB钢,并列入GB/T 6478-2001《冷镦和冷挤压用钢》,用于制造发动机连杆螺栓、缸盖螺栓以及摩托车用高强度螺栓,品质甚优,在1000 ~1200MPa的抗拉强度范围内的耐延迟断裂性能相当于或优于SCM435钢。

  日本大同特殊钢新近开发出一种10.9级耐延迟断裂的螺栓用砸钢,其成分为:w=0.25 %,w=0.03%,w=1%,w=0.01%,w=0.002%,w=0.3%,w=0.05%, w=0.025%,w=0.002%,轧态组织为低硬度的铁素体+珠光体,由于降低了杂质元素P,S含量,并添加TI,Nb细化晶粒,该钢种在1000-1300 MPa强度范围内的耐延迟断裂性能相当或优于SCM435钢,已用于制造10.9级汽车螺栓。

  国内安阳钢厂也已经按美标成功开发生产10B21系列硼钢,其w为 0.0022% -0.0054%,平均值0.0038% ;w为 0.0016% -0.0036%,平均值0.0028%。热轧态组织为铁素体+珠光体,总脱碳层深度小于0.15 mm,盘条晶粒度级别均在8级以上,1/2冷顶锻合格率100 %。但此钢种在连铸拉坯期间有时出现密集的角部小横裂,对应盘条表面则产生大量结疤,成品率不高,因此10B21系列硼钢在安阳钢厂大规模生产还有待时日。

  3.2.4、耐延迟断裂的高强度钢

  延迟断裂是指材料在静止应力作用下,经过一定时间后突然脆性破坏,是材料-环境-应力相互作用而发生的一种环境脆化,是氢致材质恶化的一种形态。当强度超过1200MPa时,高强度螺栓钢延迟断裂变得十分突出,由此造成的事故屡屡发生。因此,耐延迟断裂高强度螺栓钢的开发是近年来国内外研究的工作热点之一。

髙强度螺栓大多采用回火马氏体制造,此类钢对延迟断裂的敏感性较大。应从组织因素对高强度螺栓耐延迟断裂性能的影响考虑,可采用适当的等温处理工艺以获得下贝氏体及适量的马氏体、残余奥氏体的复相组织,利用马氏体组织的高强度和贝氏体、奥氏体组织良好的延迟断裂抗力来实现髙强度下良好的耐延迟断裂性能。或通过适当的热处理工艺获得无晶界或晶界碳化物较少的微细马氏体组织,同样可以具有良好的耐延迟断裂性能

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top