重磅:苹果秘密研发多年的人工智能终遭解密
观点。他们认为无需将用户信息放在云端,或存储训练神经网络所用的数据,也能得到提升机器学习表现的数据。Federighi认为,"外界一直存在错误的观点,做出了错误的妥协,我们想让他们走上正轨。"
这里有两个问题。第一个涉及到在机器学习系统中处理个人信息,当个人详细信息是由神经网络收集到的时,这些信息会怎么样?第二个涉及到收集训练神经网络识别行为所需的数据,不收集个人信息,又将如何做到训练呢?
苹果对两者都有答案。Cue表示,"有人认为,我们用AI做不了这些事,因为没有数据。但我们找到了获取所需的数据,同时保护隐私的方式。这是我们的底线。"
对于第一个问题,苹果的解决方式是利用其独特的对软硬件的控制。简单来说,多数个人信息仍保留在Apple Brain中。Federighi表示,"我们会将部分最敏感的信息保留在设备上,这时机器学习完全在本地运行。"他给出的例子是应用推荐,即在主屏上右滑时会出现的图标。在理解状态下,这些应用就是你意图想用的。这种预测基于许多因素,基本都与用户的行为有关。这一功能确实有用,Federighi表示,预测用户想用图标的概率有90%。
苹果存在设备上的其它信息可能包括了最个人的信息:用户使用iPhone键盘输入的文字。使用经过神经网络训练的系统,苹果能识别出关键事件和项目,如航班信息,联系人及约会。不过这些信息都存在手机上。即使是备份在苹果云上的信息,也会经过处理后不能仅由备份信息进行还原。"我们不想把信息存在苹果服务器上,公司没必要知道你的爱好或你在哪。"
苹果也在尽量减少整体上保存的信息。一个例子是,在交谈中有人可能提到一个词,这或许需要搜索。其它公司很可能在云端分析整段对话,从而识别出那些词语,但苹果设备无需这些数据远离用户就能识别出来。这是因为系统会不断与手机中的知识库进行搜索匹配。
Federight表示,"知识库很精练,但也相当完善,储存了成千上万的地点和实体。"苹果所有的应用都能用知识库,包括Spotlight搜索应用,地图和浏览器。它也能帮助自动纠错,一直在后台运行。
机器学习圈的一个疑问是,苹果的隐私限制是否会阻碍神经网络算法,这也是上文中提到的第二个问题。经过大量数据训练,神经网络才能准确。如果苹果不采集用户行为数据,又从哪里得到数据呢?与其它公司一样,苹果用公开数据集训练神经网络,但总有需要更新更准确的数据的时候,而这又只能从用户中来。苹果的做法是在不知道用户是谁的情况下收集信息。它会对数据匿名处理,随机打上识别信息。
从iOS 10开始,苹果会开始使用一种名为差分隐私(Differential Privacy)的新技术,它会对信息进行众包处理,让个人身份无法识别。这种技术可能用在出现新流行词,而它又不在苹果知识库中时;也会用在某个链接突然变得与相关查询的答案相关时,或某个表情被大量使用时。"传统的方式会将用户每次输入都传到服务器上,然后遍历数据来找到感兴趣的东西。但我们有端到端加密,不会这样行事。"虽然差分隐私是一个较为学术的词,但苹果想让它变得更加普及。
Federighi表示,"我们数年前就开发研究,做出了能大范围使用的有趣的成果。它的隐私程度令人惊叹。"简单来说,差分隐私就是对数据的若干片段加入数学噪音,这样苹果能识别用使用模式,又不会辨别出个人身份。苹果还授权研究相关技术的科技家发表论文,公布他们的工作。
Park 6
显然,机器学习改变了苹果产品的方方面面,但对于苹果本身,机器学习改变了什么,还有待观察。从感觉上说,机器学习似乎与苹果公司的气质格格不入。苹果喜欢对用户体验进行全方位的控制,所有事情都事先帮你设计好,代码极致优化。但使用机器学习,就意味着要将一部分决定权交由软件处置。将用户体验逐渐交给机器控制,苹果能接受这样的设定吗?
"这件事情引起了内部无穷无尽的争论",Faderighi 说,"我们对此曾有过非常深入的思考。以往我们根据经验,从多个维度控制人机交互的种种细节,以达到最佳的用户体验。但如果你开始训练机器通过大量数据模拟人的行为,结果就不再是苹果设计师所擅长的。所有的一切都来自数据。"
但苹果并没有回头,Schiller 说,"尽管这样的技术将改变我们的工作方式,但为了做出更高质量的产品,我们终将在这条路上越走越远"。
也许这就是问题的答案:苹果并不会大张旗鼓地宣扬自己采用了多么先进的机器学习技术,但他们仍会尽可能地将之运用到产品中,以期获得更好的用户体验。藏在你iPhone中的Apple Brain就是最好的证明。
- 解密英伟达Tesla P100、GP100、DRIVE PX2平台(04-26)
- 人工智能处理器三强Intel/NVIDIA/AMD谁称霸?(07-23)
- 2016年人工智能与深度学习领域的十大收购(07-26)
- 人工智能实现的流派 FPGA vs. ASIC看好谁?(08-27)
- IBM沃森能否在人工智能领域突破重围?(09-19)
- 英特尔与高通将在汽车芯片市场再次对决(上)(10-03)
