微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 5G发展的基础,MIMO等几大技术讨论

5G发展的基础,MIMO等几大技术讨论

时间:04-10 来源:电子发烧友网整理 点击:

是关键

  5G最显著的特点是高速,按规划速率会高达10~50Gbps,人均月流量大约有36TB。如此高的速率该靠什么资源来支撑呢?必须要靠更大的带宽!

 

  带宽用字母B来表示,它就好比是道路宽度,最大速率用C来表示,它就好比是道路的最大车流量。显然易见,4车道的最大车流量是2车道的2倍,8车道的是2车道的4倍,这非常好理解。

  增加车道数是提高最大车流量最直接有效的方法,同样地,提高速率的最直接有效的方法就是增加带宽。我依然记得读研究生时,老师在讲到带宽时掷地有声地说:"你们给我记住:高速就是宽带,宽带就是高速!

 

  人们对通信速率要求越来越高,迫使着信道的带宽就越来越宽,几根电话线的带宽不够,那就增加到几百根,几百根不够就换成同轴电缆,电缆带宽不够就换成光纤,有线通信的带宽就是这样一代代地递增着。

  而手机通信使用的是无线信道,那它的带宽是如何增加的呢?核心方法就是采用更高的频段。

 

  上过初中的都知道【光速=频率&TImes;波长】这个公式,知道这个公式就能看懂上面这个表格了,频率与波长成反比,两者之积等于光速,即30万公里/秒。

  请看表格中两个黄色块的数据,数值都是3~30,但单位不同,甚低频段的整个带宽是27kHz,超高频段的整个带宽是27GHz,后者是前者的100万倍!由此可见,频段越高且带宽越大,这点非常好理解,好比是低保户和大富豪都拿出全部的财产,后者会比前者多得多。

  所以关系就来了:5G时代若想更高速,就得使用更大的带宽,而要取得更大的带宽,就得使用更高的频段。4G之前使用是特高频段,5G就得往超高频甚至更高的频段发展了。根据国际电信联盟的专家预测,将来有可能使用30GHz~60GHz的频段,俄罗斯专家甚至提出了80GHz的方案。

  30GHz以上的频段,比上表中最后一项的超高频还要高,其波长自然要比厘米段更短,那就是更短的毫米波,因此毫米波就顺理成章地成为了5G的一项关键技术。

  2、毫米波技术

  电波传播的特性很有趣,频率越高(即波长越短)的电磁波,就越倾向于直线传播,当高到红外线和可见光以上时,就一点也不打弯了,这是个渐进的过程。

 

  毫米波一般不用于移动通信领域,原因就是它的频率都快接近红外线了,信道太"直",移动起来不容易对准。请想象一个场景,您拿着激光笔指远处墙壁上的图钉,是不是一件很困难的事?

  例如卫星车就很难"动中通",开动起来车身摇摆,天线(就是那个大锅)就很难对准卫星,通常只能驻车后工作,而且必须精细调整天线的角度,使其电波的辐射方向正对着卫星,否则就无法通信。

  手机是移动使用的,不可能打电话时还举着手机瞄准准基站的方向,那样实在是反人性。虽然在非正对方向也有信号,但强度会明显衰弱,使用体验会比4G之前要差得多。

 

  电磁波有五种传播模式,相对于未来的5G时代,我们现在手机的频率要低得多,其绕射能力还是不错的,楼房阴影处的信号也没太大问题,因为信号可以绕着到达。

 

  而未来5G的频率会高得多,绕射能力会下降,信号只能傻楞楞地直着走,以往信号能到达的犄角旮旯就到不了了,那该怎么办呢?这就引出了更一项技术—微基站技术。

  3、大规模MIMO

  大规模MIMO技术作为5G的一项关键技术,可利用多天线多用户空分技术成倍提升频谱效率,帮助运营商最大限度利用已有资源。

  大规模 MIMO的基本特征是:在基站覆盖区域内配置数十根甚至数百根以上天线,较 4G系统中的4(或8)根天线数增加一个量级以上,这些天线以大规模阵列的方式集中放置。这样可带来的好处是:首先,基站覆盖范围内的多个用户可在同一时频资源上与基站同时进行通信,充分利用大规模天线配置带来的空间自由度,提升频谱效率;其次,利用大规模天线带来的分集增益和阵列增益,还可提升用户与基站通信的功率效率。

  其实,早期提出的分布式协作网络,就已经引入了多用户MIMO的通信模式。在分布式协作网络中,处于不同地理位置的节点(分布式天线)在同一时频资源上完成与不同用户终端的通信,在提高频谱效率和功率效率的同时,也改善了小区边缘用户的性能。然而,传统的分布式天线往往会出现频谱效率和功率效率提升的"瓶颈"问题,这使得大规模MIMO在深度挖掘和利用空间维度方面独具优势。

当然,大规模MIMO也存在一些技术上的挑战。首先是大规模MIMO信道建模问题,目前大部分研究都假设大规模MIMO信道是独立同分布信道,但实测结果却表明,信道能量往往集中在有限

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top