微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 浅谈汽车ISO 26262安全标准架构及分解

浅谈汽车ISO 26262安全标准架构及分解

时间:04-05 来源:车界动力精英圈 点击:

EPB较传统的驻车制动器,除了驻车功能,还有动态起步辅助功能、紧急制动功能以及自动驻车功能等。这里我们以驻车功能为例,当驻车时,驾驶员通过按钮或其它方式发出制动请求,EPB系统在汽车的后轮上施加制动力,以防止车非预期滑行。该系统的危害有:非预期制动失效、非预期制动启动。相同的危害在不同的场景下的风险是不一样的,所以我们要对不同的驾驶场景进行分析。为了简化问题,这里我们仅对"非预期制动失效"这种功能故障进行风险评估。表3给出了EPB风险评估表,在该表中我们考虑的驾驶场景是车停在斜坡上,驾驶员不在车上。如果驾驶员在车上的话,驾驶员可通过踩刹车控制汽车滑行,可控性增加,那么所评估的ASIL等级会比表中的ASIL D低,但是对于同一个安全目标,如果评估的ASIL等级不同的话,要选择ASIL等级最高的那个。

  

  通过以上分析,得出EPB系统的安全目标为:防止制动失效,ASIL等级为D。

  3. ASIL分解原则

  通过上节介绍的危害分析和风险评估,我们得出系统的安全目标和相应的ASIL等级,从安全目标可以推导出开发阶段的安全需求,安全需求继承安全目标的ASIL等级。如果一个安全需求分解为两个冗余的安全需求,那么原来的安全需求的ASIL等级可以分解到两个冗余的安全需求上。因为只有当两个安全需求同时不满足时,才导致系统的失效,所以冗余安全需求的ASIL等级可以比原始的安全需求的ASIL等级低。ISO 26262标准的第9章给出了ASIL分解的原则,如图1所示。

  分解后的ASIL等级后面括号里是指明原始需求的ASIL等级,比如ASIL D等级分解为ASIL C(D)和ASILA(D)等,因为集成和需求的验证仍然依据其原始的ASIL等级。ASIL 分解可以在安全生命周期的多个阶段进行,比如功能安全概念、系统设计、硬件设计、软件设计阶段。而且ASIL等级可以分多次进行,比如ASIL D等级分为ASIL C(D)和ASILA(D),ASIL C(D)还可以继续分解为 ASIL B(D)和ASIL A(D )。

  但是ASIL 分解的一个最重要的要求就是独立性,如果不能满足独立性要求的话,冗余单元要按照原来的ASIL等级开发。所谓的独立性就冗余单元之间不应发生从属失效(Dependent Failure),从属失效分为共因失效(Common Cause Failure)和级联失效(Cascading Failure) 两种。共因失效是指两个单元因为共同的原因失效,比如软件复制冗余,冗余单元会因为同一个软件bug导致两者都失效,为了避免该共因失效,我们采用多种软件设计方法。级联失效是指一个单元失效导致另一个单元的失效,比如一个软件组件的功能出现故障,写入另一个软件组件RAM中,导致另一个软件组件的功能失效,为了控制该级联失效,我们采用内存管理单元,可以探测到非法写入RAM的情况。

  

  下面以一个例子介绍ASIL 分解的过程。

  假设功能F,其输入信号为S1,S2,S3,这三个信号分别测量不同的物理量,是相互独立的,经过ECU内部的逻辑运算后,发送触发信息给执行器Actuator,功能F的架构示意图如图2所示。假设经过危害分析和风险评估后,功能F的ASIL等级为ASIL D,安全目标为避免非预期触发执行器。那么功能F的各个部分继承ASIL等级,即传感器、ECU、执行器都需要按照ASIL D 等级开发,如图3所示。

  

  经过进一步的分析发现,当速度V》阈值时,非预期触发执行器,才能造成危险。那么我们在功能F的架构中,加入一个安全机制,安全机制的功能是当检测到速度V大于阈值时,不允许触发执行器。那么功能F的架构变为如图4所示。

  图4 加入安全机制后的架构

  功能F和安全机制是冗余安全需求,同时来满足安全目标,因此可以将功能F原来的ASIL等级在这两个需求上进行分解,分解为ASIL D(D)和QM(D),分解后的ASIL等级如图5所示。

  图5 ASIL分解后架构示意图

  原来的传感器S1、S2、S3按照QM开发,速度传感器按照ASIL D开发,ECU里面的软件,原来的逻辑按QM开发,安全机制的逻辑按照ASIL D开发,不同ASIL等级的软件存在于一个ECU内,为了保证软件之间的独立性,保证两者之间不相互影响,需要考虑内存保护机制,合适的调度属性来保证存储空间和CPU时间的独立性,这样会增加软件开发的很多成本。那么我们进一步采取硬件上的分离来保证独立性,我们选择一个成本很低的简单的芯片(比如PGA, Programmable Gate Array)来运行安全机制中的软件(如图6所示)。需要注意的是PGA要使用独立的电源和时钟。

  

  图6 改进的ASIL分解后架构示意图

经过分解后,按照ASIL D开发的功能逻辑简单,使得开发变得简单,整体成本

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top