微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 基于模拟音频连接器的全双工数据流实现方案

基于模拟音频连接器的全双工数据流实现方案

时间:07-04 来源:维库电子市场网 点击:

  音频主动降噪技术深受消费者青睐。目前为止,它主要应用在独立的主动降噪头戴式耳机和耳麦中。消费者希望能在嘈杂的环境下享受音乐,并愿意因此购买可提供这种功能的耳机。

  目前,手机厂商正将主动降噪技术作为其产品的一大差异化优势,在通话和媒介消费上提供卓越的音频体验。最经济实惠且便捷的降噪方法就是在手机中内置降噪电路。但是噪声拾取必须在耳机上实现而不是在手机上,因为手机可能会放在用户的口袋里从而可能会阻断噪音源。

  这就带来了很大的困难:如何通过标准的3.5毫米音频接口将左、右两个通道的噪声信号从耳机传送到手机,同时将降噪信号从手机回传到耳机。标准的模拟音频接口一般有四个通道。两个通道被用于左、右声道的喇叭,一个麦克风通道和地线。麦克风通道同时用来给麦克风供电。在打电话时,麦克风将语音信号传送到手机。

  当3.5毫米音频接口被用于传统模拟模式时,就无法将左、右两个通道的噪声信号从耳机传送到手机上进行处理。奥地利微电子已开发出全新的数字多路复用技术,实际上,它可在麦克风通道中创造额外的通道。这些通道能够用于降噪应用,可将耳机中两个或四个额外的左、右声道的麦克风的采样噪声传送到手机中。

  在其他应用中,额外通道可用来与音频配件进行中、低数据率的数据通信,比如给配件增加显示功能、传送传感器数据或其他额外功能。当然,音频接口的传统工作模式也会得到保留,因此不支持增强特性的标准耳机仍可以使用。本文介绍了如何通过3.5毫米音频接口来实现全双工数据通信。

  同时采用电压和电流调制

  如今数字麦克风作为基于过采样时钟的串行∑-Δ调制比特率流被广泛用来提供音频信号。这使得采用多路复用信号数字技术提供全双共通信成为可能。挑战是在同一线路上避免上行和下行信号之间的干扰,同时提供一个足够高的比特率来满足消费者对高音质的需求。一种可行的技术是在麦克风通道上同时采用电压和电流调制技术:一个提供上行信号,另一个则提供下行信号。

  为了验证此项技术的有效性,奥地利微电子开发了一个完整的演示系统,该系统包括降噪功能,能够用3.5毫米音频接口与手机或MP3播放器相连。它提供了约2Mbit/s的上行信号和12Mbit/s的下行信号。

  该演示系统由主电路和外围电路组成(见图1、2)。(在实际的终端产品设计上,主电路会嵌入到移动设备中,而外围电路则是在耳机的控制部件上。)

  

  图1:数字多路复用演示系统方框图。

  

  图2:奥地利微电子的演示系统展示了主电路板(底部),带有音量放大、模式和音量减小键的外围电路板(上),以及头戴式耳机。

  电池与主电路板相连,以提供独立的电源。主电路板通过3.5mm麦克风接口的麦克风通道给从电路板供电,同时传送调制的麦克风信号。主电路板会生成一个同步时钟,外围电路板时钟与其同步。

  图3是功能框图。主电路和外围电路都由两块板组成。主电路板A提供电源、通过锁相环生成的时钟,用于数据准备的数字电路,锁定检测和合并的数据调制器/解调器核心模块。该板包含了数据传输系统的主要功能。

  

  图3:显示主电路(终端产品设计的手机)和外围电路(终端产品设计的耳机控制器)间功能分区的框图。

  主电路板B包括应用电路:将数字麦克风信号转换成音频信号的数模转换器、音频放大器、AS3430降噪芯片、滤波器,一个微控制器和一个液晶显示器。

  外围电路板A包括电源稳压器、同步和数据提取器、数据调制器、控制按钮和主麦克风(用于拾取用户的声音)。外围电路板B包含锁相环和数据操作的控制逻辑。将耳机中两个用来拾取降噪信号的麦克风与外围电路板相连。

  主电路板上生成的主时钟频率是2MHz。这用来在给外围电路板供电的麦克风通道上调制一个电压在3V左右的锯齿波。外围电路板会产生一个2.2V供电电压;锯齿波电压的下降边缘被外围电路板用来恢复2MHz的时钟。为了保证数字组件在2.2V低电压下正常运行,外围电路板上的晶体管门电路需采用LV/LVC系列。锯齿电压频率控制生成外围电路板工作频率的锁相环的运行。由于主电路板上采用了相同的锁相环电路,因此两个电路板可同步运行,这能够避免传输数据的采样问题。

  从主电路板向外围电路板传输数据时,锯齿波幅度大小可满足对编码的要求(见图4)。两个幅度可定义"高"和"低"信号;第三个幅度可用于实现同步。采用所选的时钟频率可实现2Mbits/s的上行数据率。

  

  图4:电压调制的时序框图。

上行传输是通过电压调制实现,但从外围电路板到主电路板的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top