微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 浅谈如何利用光耦合器提高PV逆变器的性能

浅谈如何利用光耦合器提高PV逆变器的性能

时间:03-25 来源:互联网 点击:

合器抵御瞬变杂讯能力的衡量标準。CMR为衡量光耦合器性能的最重要指标之一,其他指标还有隔离等级和工作电压等。

  八接脚DIP共面(Coplanar)结构的光耦合器,可提供输出电容高电介质(Dielectric)绝缘和低输入。八接脚DIP封装允许大于8毫米(mm)的沿面和间隙距离及0.5mm绝缘距离,以实现可靠的高电压绝缘。

  因此,闸极驱动器光耦合器解决方案,可提供更多的绝缘安全缓衝区,而电容性或电感式解决方案的绝缘距离不到0.1mm。如此一来,优化安全并降低杂讯耦合。这装置採用共面光学耦合技术,以阻挡由负载切换产生的电子杂讯所引起的干扰。而且还有一个特殊电光学遮罩,可降低开关瞬态和光耦合器的主动电路之间发生电容耦合的机率。

  一般240V交流电源转换器会产生800V开关瞬态,以及大于6kV/μs的转动率。此大幅度的瞬态,会导致3mA峰值电流于输入和输出之间流动(用于CIO只有0.5皮法(pF)的隔离设备时)。图4显示一则範例,一个电容耦合了耦合器的输入和输出之间的杂讯电流。

  

  图4 电流模式抑制LED「OFF」

  共模瞬变具有负的电压摆动率,与耦合器的输出接地(GND2)引用一样;该瞬态可将耦合器的输出牵引到输出;包电容(Package Capacitance)即CIO,提供输入和输出之间的主要耦合阻抗;当LED关闭时,闸极的输出为低状态;如果有充裕的共模电流iCM从输入端牵引到光学放大器,放大器则会开启。

  杂讯电流iCM为极小,因为有特殊共模遮罩可阻挡电子遮罩变化造成的影响,该遮罩会最小化流入或流出光学放大器的耦合,将有效的共模耦合电容限制到小于50pF。如此一来,光耦合器能轻鬆抑制最大幅度为1.5kV放入正或负的共模瞬变,以及超过15kV/μs的转动率。

  当通过LED,IF的控制电流等于10mA时,驱动器输出电流为高,源电流流向负载。正dv/dt会从放大器中牵引出电流,增强光电流;负dv/dt会将电流引向放大器,抵销光电流,并可能导致放大器因而从高过渡到低。

  当IF等于0mA时,驱动器输入为低,会从负载汲入电流。正dv/dt会从放大器拉出电流,并可能导致放大器从低过渡到高。负dv/dt会将电流引入放大器,并协助维持放大器维持输出为低状态。

  一般情况下,儘量减少逻辑控制和功率半导体之间的耦合电容,可大幅度降低共模杂讯瞬变成为正常模式脉衝杂讯的能力。于驱动点使用低且平衡的阻抗,可提高抗干扰能力,使用电化隔离(Galvanic Isolated)驱动器进行功率MOSFET控制,可将共模杂讯耦合降至最低。

  分流LED提升半桥配置效能

  半桥拓扑配置中,共模瞬变抑制尤其重要,因为正常电流工作状态下的开关瞬变,可能导致关闭的闸极驱动打开。分流(Shunt)LED即可派上用场,可提升半桥配置的抗电流模式瞬变能力,并将包电容的负载dv/dt耦合维持于低阻抗--对于正在运行的LED或正在运行的BJT或逻辑闸的开态电阻。但此作法的缺点是,增加分流LED驱动会降低效率,因为无论LED开启还是关闭,此电路皆会消耗电量。图5为一个配置样本。

  

  图5 带有分流LED驱动的光耦合器架构

  LED与驱动开关并联,以形成电流分流驱动。U1是一个开路洩极逻辑闸,做为一个驱动器。当开关关闭且U1为高时,会有LED电流经过。若要关闭LED,须将闸强制变为低状态,这会将经过LED的电压降低至小于所需的正向电压值。它还能提供低阻抗,降低共模传导电流对LED运行的影响。

  了解光耦合器最大开关频率

  使用光耦合器时,了解设计的最大开关频率会非常有用,此项计算涉及两个基本步骤,首先必须确定于最大工作结温125℃和室温100℃下,光耦合器输出驱动器MOSFET可扩散的最大功率。其次,确定于给定MOSFET闸极的充电和放电电流情况下,输出电晶体的扩散RMS功率,以及整个光耦合器电晶体的RDS(ON)压降。

  太阳能逆变器在产生和传输乾净与永续能源方面,发挥重要作用。执行DC-AC转换时,须对高压电流进行谨慎、有效的隔离,而光耦合器正适用于此种功率缓衝。如果特别注意启动要求和使用相关技术提高抗干扰能力,则可协助优化光耦合器的性能。

  本文文中描述的闸极驱动光耦合器,与离散式功率MOSFET和IGBT的产品相容,因此,设计人员可统一设计电力转换电路的逻辑、隔离和MOSFET部分。该解决方案可将毫瓦(mW)转换成kW,并同时提供初级和次级电路之间的隔离。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top