微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 硅光子技术全面普及:体验硅发光技术的进展

硅光子技术全面普及:体验硅发光技术的进展

时间:04-10 来源:本站整理 点击:

)/bit(图3)1)。虽然还有好几倍的差距,但如果只限于光传输的各项功能,耗电量比IBM的试制品小2、3位数的技术也已开发出来。

  图3:在不远的将来,微处理器内核间的传输必然要采用光传输

  本图为微处理器的CPU内核间传输等的电传输技术和光传输技术的耗电量。今后的高性能微处理器光凭电传输将无法实现耗电量的要求条件。而在距离为1cm的传输中,光传输的耗电量与电传输基本相同。还出现了各部件的耗电量比电气方式大幅降低的例子。(摄影:IBM)

  在用途方面对硅光子光传输的期待也越来越高。随着以提高微处理器速度为目的的多核化和众核化的推进,必须要大幅增加内存带宽和CPU内核间的数据传输容量。但多核化会导致CPU内核间的传输距离增长。而且,传输容量必须扩大到与内核内的全局布线相当的程度。对电传输而言,条件越来越苛刻。而对于正处于发展期的硅光子光传输,今后其耗电量还需要大幅降低。

  小型化也取得巨大进展

  瞄准芯片间光传输的部件试制也已经展开。由日本内阁府提供支援的研究开发组织"光电子融合系统基础技术开发(PECST)"试制的光收发器IC注3)达到了目前世界最高的集成度和传输容量密度。PECST于2012年9月发布了可在1cm2的硅芯片上、集成526个数据传输速度为12.5Gbps的光收发器的技术注4),数据传输容量密度相当于约6.6Tbit/秒/cm2。主要用于负责LSI间大容量数据传输的光转接板(图4)。

  图4:芯片间布线驶入"光的高速公路"

  本图为东京大学荒川研究室与PECST开发的LSI间数据传输用光转接板的概要。除了作为光源的激光元件外,都使用CMOS兼容技术集成到了SOI基板上。激光元件也可以利用普通的贴片机安装到芯片上。(摄影:右为PECST)

  注3)PECST是以在2025年实现"片上数据中心"、即在硅芯片上实现数据中心功能为目标成立的研究开发组织。2010年3月开始研究工作。

  注4) 该光收发器每组所占面积为0.19mm2。除激光元件外全部利用CMOS兼容技术实现。

  这次发布具有划时代的意义,该技术解决了各元件的尺寸过大、难以实现短距离传输和高密度集成的原有课题。常有人把光传输比喻为"飞机"运输,而把电传输比喻为"铁路"或"汽车"运输,如果是跨海的长距离运输,使用飞机比较合适,但如果只是向几公里远的相邻城市运输货物则不适合使用飞机。因为不仅有燃料的问题,飞机起降所需的"机场"也太大。而光传输中相当于"机场"的光收发器的尺寸原来就非常大,有数cm见方,不适合1cm距离的传输(图5)。

  从PECST的试制品上,能看到在面积1cm2的芯片上集成多个光收发器IC的可能性。光收发器IC和构成元件的小型化几乎直接关系到低耗电量化。因为元件面积小的话,元件容量也小。通过推进元件尺寸的小型化,一举改善了光传输的耗电量和集成度这两项课题。

  图5:即将实现10Tbit/秒/cm2的传输容量密度

  本图为光传输用收发器的小型化以及伴随小型化的集成度提高情况。通过小型化提高集成度的话,传输容量密度也会提高。目前的最高传输容量密度为PECST实现的6.6Tbit/秒/cm2。PECST预计2013年上半年将实现10Tbit/秒/cm2。

  开发独特的核心技术群

  PECST的光收发器的实现主要依靠四项核心技术(图6),分别为(1)作为光源的激光阵列元件、(2)连接光源与硅波导的光斑尺寸转换器(SSC)、(3)Mach-Zehnder型光调制器*、(4)锗光敏元件。

  图6:实现6.6Tbit/秒/cm2传输容量密度的核心要素

  本图为东京大学荒川研究室与PECST实现6.6Tbit/秒/cm2传输容量密度的技术要点。激光元件方面,开发出了大规模阵列化的技术;大幅降低了光斑尺寸转换器的损失;光调制器的尺寸缩小至原来的1/4;锗光敏元件也实现了2倍以上的高速化。(摄影:PECST)

  *Mach-Zehnder(马赫-曾德尔)型光调制器=光干涉仪的一种,一般是把同一光源的光分成两束,对其中一束实施相位控制等处理后,再与另一束光耦合。

  (1)激光阵列元件以约30μm的间距成功地配置了13通道的激光二极管(LD)。PECST称"目前已经制作出104通道的元件"。

  (2)SSC把以往的一条锥形波导改为三条波导构成,从而大幅降低了光耦合损失。而且,在硅上安装激光阵列元件时的位置对准精度也大幅放宽,为0.9μm。

  解决了调制器的两个课题

对光收发器的小型化贡献最大的是(3)光调制器的开发。以前,Mach-Zehnder型光调制器为了补偿调制效率低的问题,需要较长的路径长度。原来长度为1cm以上,最近缩短到了1mm左右,而此次大幅缩短至250μm。这是通过将pin型二极管像梳子齿一

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top