加强触控模组与面板同步 克服杂讯干扰问题
ACVCOM信号波形,其中通常含有一个高强度基频,其波形接近方波。ACVCOM运作频率一般介于5k~25kHz之间,通常基频频率会对应到LCD每列画素更新(扫描线频率)的速度。
图3 ACVCOM显示器耦合杂讯与时间关系图
图4则显示实际撷取到的DCVCOM波形。DCVCOM波形类似数个尖锐的高频脉冲,没有类似ACVCOM的高强度基频,但其谐波量可轻易冲高到 50k~300kHz,短暂的脉冲对应到子画素电极驱动信号。DCVCOM杂讯的特性和显示影像有高度相依性,最糟状况的影像通常是整个屏幕上以棋盘状排列的黑白交错画素(看起来接近灰色);但是在分析DCVCOM显示器特性之前,请务必测试多种不同影像。
图4 DCVCOM显示器耦合杂讯电压与时间关系图
降低LCD杂讯 触控IC商祭出五大招
设计者要确实降低影响触控面板控制器的显示杂讯,可利用几种方法,包括削减杂讯强度、避开杂讯的频率、导入数字滤波器、改良触控传感器设计或加强触摸屏与LCD面板的同步化。
一般来说,设计工程师可以用一层强固的ITO覆盖住整个显示器,此遮蔽层置放于显示器与触控面板传感器之间,直接连结电路接地端,因此显示杂讯会直接传到接地端而不是触控面板控制器。遮蔽层在减少杂讯方面通常效率颇高,不过,由于会增加触控面板制造成本,加上会减少面板的透光度使影像品质略受影响,因此较不受业者青睐。
相形之下,挑选适合的运作频率,让触控控制器的频率不同于LCD杂讯频率则是最佳选项之一。对此种方法而言,导入能应付大量尖峰杂讯的触控控制器,并且避免触摸屏感测电路过度饱和,有助达成降杂讯的目标。
此外,窄频接收器有助于配合杂讯尖波(Spikes)进行调整,还能帮助在撷取到的波形产生快速傅立叶转换(FFT),以便了解应把触摸屏运作频率设定在哪裡,如图5显示DCVCOM时域波形的FFT。目前触控控制器制造商也以开发出许多自动工具,能帮助挑选理想的运作频率,其中许多工具能扫描触摸屏运作频率,还能同时监视杂讯。
图5 DCVCOM耦合杂讯与频率FFT关系图
此外,数字滤波器对降低杂讯亦有很大帮助。工程师有许多线性与非线性滤波器可挑选,对不同的应用各有优缺点。线性滤波器方面,传统无限脉冲响应 (Infinite Impulse Response, IIR)或有限脉冲响应(Finite Impulse Response, FIR)滤波器,虽然在降低杂讯方面表现不错,但在追踪屏幕上手指碰触点的速度会有点迟钝。
如今业界已针对这些滤波器进行许多改良,带来更好的手指追踪性能。其他非线性滤波器也能降低杂讯,尤其针对含有高强度但不常出现的杂讯尖波的脉冲杂讯。另外有少数滤波器能聪明的辨识LCD杂讯,并把杂讯从实际信号分离出来。含有硬体滤波器的触控控制器会为产品加分不少,因能节省杂讯处理的时间与功耗。
由于触控传感器对整体产品的效能而言相当重要,因此,许多新型传感器设计也纷纷朝向能降低显示杂讯的研发方向迈进。其中一种热门方桉就是曼哈顿(Manhattan),取这个名字是因为它的样式酷似纽约曼哈顿地区的街道,为完美的水平与垂直排列(图6)。
图6 曼哈顿触控传感器架构示意图
触控传感器包含发送器(TX)与接收器(RX),所有真正多点触控的传感器都能驱动TX,并在RX上接收信号。在曼哈顿传感器设计中,TX占位相当宽,位置在RX之下;RX则较窄,因为要消除寄生电容以及减少杂讯耦合。
总而言之,曼哈顿传感器让TX传感器能削减大部分的杂讯,且不会让杂讯传到RX,现今业界均采用许多精密的曼哈顿衍生技术。
In-cell实现触控面板与LCD同步化
最后,触控面板与LCD之间的同步化,亦是降低显示杂讯的选项之一。事实上,这绝对须仰赖In-Cell设计才能实现。触控面板控制器要进行同步化,可透过监看LCD驱动器的水平与垂直同步信号,分别名为HSYNC(Horizontal Synchronization)与VSYNC(Vertical Synchronization),进一步与LCD面板同步。
值得注意的是,在ACVCOM解决方桉中,有些触控面板控制器能直接从触摸屏传感器挑出杂讯,随即开始扫描,不须藉由监看LCD驱动器的HSYNC与VSYNC信号;此种ACVCOM的同步化相当直接,因为基频强度很高且频率很低。
相形之下,DCVCOM就比较困难,因为杂讯频率较高,触控面板控制器的扫描与静止期之间需要精准的时序调整。
随着手机做得愈来愈薄,触控面板控制器会暴露在更多的显示杂讯下,这是因为显示器与触摸屏传感器之间有更紧密结合的电容耦合,促使各界更专注于显示器如何运作,显示杂讯究竟来自哪裡,如何量测显示杂讯,以及有哪些降低显示杂讯的选
- 这篇文章告诉你OLED面板是如何炼成的(02-12)
- 2017年OLED即将迎来集体爆发,在此之前您需要了解这些(02-22)
- AMOLED技术添新人 友达明年将量产(11-10)
- 都是AMOLED屏幕 其中的差别在哪?(05-02)
- AMOLED与OLED的主要区别到底在哪里?(06-27)
- OLED家族族谱解密及其发展瓶颈分析(09-21)