微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > TPMS外置编码存储器式轮胎定位技术设计方案

TPMS外置编码存储器式轮胎定位技术设计方案

时间:02-11 来源:全网电子 点击:

TPMS外置编码存储器式轮胎定位技术设计方案

TPMS技术及轮胎定位原理   

汽车轮胎压力监测系统(TPMS)主要用于在汽车行驶时,适时地对轮胎气压进行自动监测,对轮胎漏气造成低胎压和高温高胎压爆胎进行预警,确保行车安全。 TPMS中的轮胎定位是指系统接受轮胎发射模块发出的信号,并识别、判定出是哪个轮胎的过程。

轮胎重新定位问题的提出  

汽车因为前后左右车轮负荷不均、前轮负责转向和前后轴悬挂角度不同等原因,通常各轮胎磨损程度和位置也不同。为了延长轮胎的使用寿命,达到四个轮胎同步均匀磨损的效果,这就需要定期进行轮胎换位。在轮胎换位的过程中,相应的发射检测模块也会换位。这就导致了原先存储在接收显示模块MCU中的ID码与轮胎对应识别关系信息不再适用于换胎后的轮胎位置,即显示屏上的轮胎压力和温度信息和轮胎的对应关系产生错误。如果调换新的轮胎或者某一轮胎的发射检测模块损坏,用户需要更换该模块时。新模块的ID码与损坏的发射检测模块不同。原先存储在接收显示模块MCU中的ID码与轮胎对应身份识别关系信息不再适用于更换模块后的ID码,接收显示模块会将更换的模块的信息丢弃,显示屏上将无法显示新模块发出的压力和温度信息。 这样在轮胎换位或调换轮胎时就存在一个轮胎重新定位的问题。

现有TPMS采用的轮胎定位技术   

目前,解决TPMS轮胎换位和调换轮胎时的重新定位问题常见的有以下四种方式。

1 定编码式   定编码方式中,接收显示模块MCU中的ID码与轮胎对应定位关系信息在出厂时是固化的,在使用中不可更改。这种方式的不足之处是:安装错位会导致定位混乱;发射模块损坏后,用户必须向原厂商购买与损坏模块编码一致的模块;轮胎换位时发射检测模块必须按照其标记位置重新安装一次。

2 界面输入式   界面输入式定位技术是将每个发射模块的识别ID码打印在外包装或产品上,但当轮胎换位或发射模块损坏后,就必须将识别ID码用按键输入到接收端进行重新定位。界面输入式的识别ID码长为16或32位,输入流程复杂,容易出现码组输入错误问题。此外,这些按键在本来就仪表众多的车上显得十分突兀。

3 低频唤醒式   低频唤醒式定位技术是利用低频(LF)信号(125kHz)的近场效应。在该方案中,在每个轮胎附近有个LF天线;TPMS可以通过对应轮胎附近的LF天线发出LF信号,单独触发对应轮胎的发射检测模块,然后由被触发的发射检测模块将身份识别码通过RF发射出来,接收模块通过RF信号得到相应ID,从而自动确定轮胎位置。该定位方式的不足之处是:需要4个LF天线安装在对应的轮胎附近,安装及布线工作量大;LF信号可能会误触发相邻的发射检测模块;汽车上电磁环境复杂,存在各种干扰,会对低频信号造成干扰,导致身份识别失效。

  

图1 外围编码存储器式定位技术原理图

 4 天线接收近发射场式   该定位技术接收显示模块的接收天线有4个,分别延伸到每个轮胎20~30cm的近场内,接收天线由数控微波开关控制。当需接收某个轮胎发射检测模块的信息时,只有靠该轮胎接收天线的微波开关是导通的,其他都处于关闭状态,接收显示器上显示该轮胎的气压和温度。该定位技术的不足之处是:天线布线复杂,微波开关成本高,目前技术水平下RF开关隔离度不够,有串码(即接收到了别的轮胎的信息)的可能;汽车上的电磁干扰可能导致定位失效;射频开关的导通时序是按一定规则的,而4个轮胎发射检测模块的发射是随机的,故会存在某个轮胎附近的射频开关导通时,该轮胎的发射检测模块正好没有发射信号,导致漏帧。

外置编码存储器式轮胎定位技术   外置编码存储器轮胎定位技术是一种新型的TPMS轮胎定位技术。如图1所示,采用外置编码存储器的TPMS同样由发射检测模块和接收显示模块组成,其特征在于,在接收显示模块接插有插入式编码存储器,每个发射检测模块均有一个固定的ID码,与对应编码存储器的ID码一致。   轮胎换位或者更换时,只需调换或更换插入式编码存储器。外置编码存储器式轮胎定位技术通过调整显示模块编码存储器中的ID码与每个发射检测模块中的ID码的对应关系,将重新识别身份的问题转换成ID码的换位设置问题,是简单、有效的解决方案。其插头插入的操作方式简单可靠。通过I/O读入插入式编码存储器电路中的编码,避免了用无线方式读入ID编码,从根本上解决了干扰的问题。

外置编码存储器的电路设计  图2是TPMS系统的电路实现框图,本文主要对外置插入式编码存储器电路进行阐述,不涉及发射机和显示器本身的电路。外置编码存储器电路的设计包括两部分,一是和主机的连接部分,即连接电路的设计,二是存储器的设计。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top