锁相环是什么?锁相环原理及锁相环在调制和解调电路中的应用
锁相环就是锁定相位的环路,它一种典型的反馈控制电路,利用外部输入的参考信号控制环路内部振荡信号的频率和相位,实现输出信号频率对输入信号频率的自动跟踪,一般用于闭环跟踪电路。是无线电发射中使频率较为稳定的一种方法,主要有VCO(压控振荡器)和PLL IC (锁相环集成电路),压控振荡器给出一个信号,一部分作为输出,另一部分通过分频与PLL IC所产生的本振信号作相位比较,为了保持频率不变,就要求相位差不发生改变,如果有相位差的变化,则PLL IC的电压输出端的电压发生变化,去控制VCO,直到相位差恢复,达到锁相的目的。能使受控振荡器的频率和相位均与输入信号保持确定关系的闭环电子电路。
锁相环的工作原理
1.压控振荡器的输出经过采集并分频;
2.和基准信号同时输入鉴相器;
3.鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;
4.控制VCO,使它的频率改变;
5.这样经过一个很短的时间,VCO的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位同步。当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。这时,压控振荡器按其固有频率fv进行自由振荡。当有频率为fR的参考信号输入时,uR和uv同时加到鉴相器进行鉴相。如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv=fR,环路锁定。环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。这时就称环路已被锁定。
锁相环的组成
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。
锁相环在调制和解调中的应用
为了实现信息的远距离传输,在发信端通常采用调制的方法对信号进行调制,收信端接收到信号后必须进行解调才能恢复原信号。
所谓的调制就是用携带信息的输入信号ui来控制载波信号uC的参数,使载波信号的某一个参数随输入信号的变化而变化。载波信号的参数有幅度、频率和位相,所以,调制有调幅(AM)、调频(FM)和调相(PM)三种。
调幅波的特点是频率与载波信号的频率相等,幅度随输入信号幅度的变化而变化;调频波的特点是幅度与载波信号的幅度相等,频率随输入信号幅度的变化而变化;调相波的特点是幅度与载波信号的幅度相等,相位随输入信号幅度的变化而变化。调幅波和调频波的示意图如图8-4-4所示。
上图的(a)是输入信号,又称为调制信号;图(b)是载波信号,图(c)是调幅波和调频波信号。
解调是调制的逆过程,它可将调制波uO还原成原信号ui。
锁相环在调频和解调电路中的应用
调频波的特点是频率随调制信号幅度的变化而变化。由8-4-6式可知,压控振荡器的振荡频率取决于输入电压的幅度。当载波信号的频率与锁相环的固有振荡频率ω0相等时,压控振荡器输出信号的频率将保持ω0不变。若压控振荡器的输入信号除了有锁相环低通滤波器输出的信号uc外,还有调制信号ui,则压控振荡器输出信号的频率就是以ω0为中心,随调制信号幅度的变化而变化的调频波信号。由此可得调频电路可利用锁相环来组成,由锁相环组成的调频电路组成框图如图8-4-5所示。
根据锁相环的工作原理和调频波的特点可得解调电路组成框图如图8-4-6所示。
锁相环在频率合成电路中的应用
在现代电子技术中,为了得到高精度的振荡频率,通常采用石英晶体振荡器。但石英晶体振荡器的频率不容易改变,利用锁相环、倍频、分频等频率合成技术,可以获得多频率、高稳定的振荡信号输出。
输出信号频率比晶振信号频率大的称为锁相倍频器电路;输出信号频率比晶振信号频率小的称为锁相分频器电路。锁相倍频和锁相分频电路的组成框图如图8-4-7所示。
图中的N大于1时,为分频电路;当0《1时,为倍频电路。
锁相环 相关文章:
- 多锁相环和扩频时钟在数字娱乐设备中的设计应用(08-28)
- 锁相环实现倍频的原理是什么?锁相环的组成及倍频的三种方法解析(06-24)
- 锁相环的电源管理设计(11-13)
- 布线工程师如何充分“掌控”时钟信号?(02-21)
- 一种全数字UPS逆变器锁相控制技术的研究(02-06)
- 推陈出新 时钟同步技术的现状及发展(02-11)