提高可穿戴设备的电池续航方案
TI的 TPS727xx系列,250mA LDOs 特色是有着极小的仅为7.9µA静态电流,低流失(100mA典型电压为65mV,200mA典型电压为130mV,250mA典型电压为163mV),宽输出电压和负载瞬态响应。LDO还有一个特点是有着高电源电压抑制比(PSRR),在RF应用上有着1kHz 70dB的平稳表现,有着小的低成本的10µA陶瓷电容器。
如今TI推出的还有TPS82740B 200mA降低转换模块,在能提供95%的转换率,在工作时仅消耗360nA lq,而安静时更仅为70nA。小型模块可用于完全整合,合并了交换调整器,感应器和输入/输出电容9-bump MicroSiP™组件,实现了仅6.7mm2大小的尺寸。
图3: 低功率TPS82740x 360nA Micro SIP 降低转换器模块
递增的或激增的转换通常不如降压转换有效率。然而,加大电源电压对系统中不同的电路来说很有必要,特别是演示。Maxim有新1A增压器,MAX8627能使单电池锂电池产生激增的输出电压从3V到5V,高达95%的转换率只消耗20µA lq。硅谷实验室现在有TS33x增压器,拥有行业领导的低至150nA的lq。TS33x增加输入电压从0.9V到3.6V,并且有8个可选择的范围为1.8V到5V的输出电压。
蓝牙,微控制器和其它低功率方案
事实上,系统中的所有东西都需要考虑到,当试图延长可穿戴设备电池续航时。
一个常见的省电的方式就是关闭一些高耗电的功能,如在其他东西上处理显示,比如智能手表,写字板,或电脑。Bluetooth® Smart或者叫低耗蓝牙,自动被加入大多数新智能手表中,因此是可穿戴设备无线交流方式标准。蓝牙也可用于从智能手机传送信息到智能手表,并且TI提供了一个"蓝牙可穿戴手表发展系统"叫做 TI Meta Watch™ 确保了相关手表设备的快速发展。Meta Watch SDK/API 使在手表上从手机应用或网络服务上接受信息很容易。开发系统包括有显示屏的智能手表,和一个3 ATM 防水不锈钢外壳,皮带表,矿石水晶镜面,震动电机,三轴加速计,和环境光感应器。
图4:德州仪器Meta Watch™ Bluetooth® 可穿戴手表开发系统确保了"可连接手表"应用的快速发展。
Meta手表平台已为低功率运行优化,基于TI16位的MSP430™超低功率的微控制器 (MCU)和CC2564蓝牙主控器界面方案。
选择MCU对可穿戴设备的电源管理很重要,高效的MCU能加速载入数据并迅速进入睡眠,保存电量。低能睡眠模式在系统不被使用时能有效减少电源消耗。可穿戴设备的设计者比之前有更多MCU的选择,32位比16位更有成本竞争力。为成本和功率敏感的MCU优化的ARM’s Cortex-M series32位处理器核心已经能预见到在可穿戴市场的成功。从超低功耗的Cortex-M0 and M0到高性能的 Cortex-M7,ARM Cortex-M 系列可以提供能满足不同需求的各种穿戴设备。基于ARM-Cortex-M系列的MCU如今许多厂商都可提供,包括德州仪器,和STMMicroelectronics,有着STM32 MCU巨大的生产线,包括STM32L1和L0 超低功耗MCU。
最后,一定要考虑到可穿戴设备中无数的传感器的电源管理。传感器技术的发展是加剧可穿戴市场发展的燃料。但是我们不能忘记传感器的外围电路。STMicro可用于有低功耗传感器信号调理的可穿戴传感器,通过提供QA4NP线组,每信道只消耗580nA的低功耗运算放大器(在1.8V的电源供给下)。
这只是一小部分,关于现在低耗管理技术,和产品如何协作,来创造能满足有急切需求的可穿戴市场的超低电源系统。然而,认识到超低功耗设备不止足于穿戴设备很重要;新的低耗技术也能应用于其他的应用程序,那些很难保存电量的程序。
- 谷歌眼镜初体验:眨眼拍照、WIFI接入、语音文本转换(03-24)
- 可穿戴设备新趋势:触摸即可发光的“电子皮肤”(06-24)
- 医疗可穿戴智能设备的主要器件:MEMS传感器(02-14)
- 应可穿戴保健设备大势 ADI最新解决方案详解(02-11)
- 可穿戴设备市场起飞,蓝牙Smart引爆设计热潮!(02-17)
- 三星最新曲面Gear Fit最详拆解:内部设计构造大揭秘(04-29)