你知道扫地机器人是怎样规划路径的吗?
负梯度称为势力。势场的建立主要用于动态避障,此时的引力极是局部环境中的中间目标,斥力极则是局部环境中的障碍物。引力和斥力的合力作为机器人的加速力,来控制机器人的运动方向和计算机器人的位置。该方法结构简单,便于低层的实时控制,在实时避障和平滑的轨迹控制方面,得到了广泛的应用。但对存在的局部最优解的问题,容易产生死锁现象,因而可能使机器人在到达目标点之前就停留在局部最优点。
2.栅格法
设定移动机器人实际几何形状可用方形区域表示。规划过程中将机器人缩为一个点,而环境中的障碍物边界做相应的扩展及模糊化处理。采用网格表示工作空间,即把工作空间划分为一个个大小相同的方格,方格大小与机器人几何外形相同。
用栅格法表示环境:使用大小相同的栅格划分机器人的工作空间,并用栅格数组来表示环境,每个栅格是两种状态之一,或者在自由空间中,或者在障碍物空间中。这种方法的特点是简单,易于实现,从而为路径规划的实现带来了很多方便,具有表示不规则障碍物的能力;其缺点是表示效率不高,存在着时空开销与精度之间的矛盾,栅格的大小直接影响着环境信息存储量的大小和规划时间的长短。栅格划分大了,环境信息存储量就小了,规划时间短,分辨率下降,在密集环境下发现路径的能力减弱;栅格划分小了,环境分辨率高,在密集环境下发现路径的能力强,但环境的存储量大。所以栅格的大小直接影响着控制算法的性能。
3.模板模型法
另外一种常用的方法是模板模型。DeCaravalh提出了一种依靠二维清洁环境的地图并且是基于完全遍历路径规划的模板。为了完成完全遍历路径规划,DeCaravalh定义了五种模板,分别是:前进模型(Towards Model),沿边转向模型(Side Shift)、回逆跟踪(Backtracker),U转弯模型,U转弯交替模型。模板模型法是基于先验知识和先前的环境地图遍历机器人让得到的环境信息来匹配事先定义的模板。因此,整个路径就是一系列的模板组成的。在这个方法中,为了简化路径规划过程,环境事先扩大,这样这种小巧灵活的机器人就可以考虑成一个质点。基于模板的模型完全遍历路径规划,它要求事先定义环境模型和模板的记忆,因此对于变化着的环境就不好处理了,比如在遍历机器人的工作过程中突然出现一个障碍等。
4.人工智能法
近年来有许多学者利用模糊逻辑、人工神经网络、遗传算法等现代计算智能技术来解决机器人的路径规划问题,并取得了一些可喜的成果。
1)模糊控制算法
模糊控制方法应用与路径规划,是一种很有特色的方法,是在线规划中通常采用的一种规划方法,包括建模和全局规划。它用若干个传感器探测前方道路和障碍物的状况,依据驾驶员的驾车经验制定模糊控制规则,用于处理传感器信息,并输出速度、加速度、转角等控制量,指导小车的前进。该方法最大的优点是参与人的驾驶经验,计算量不大,能够实现实时规划,可以做到克服势场法易产生的局部极点问题,效果比较理想。
模糊控制的路径规划方法特别适用于局部避碰规划,具有设计简单、直观、速度快、效果好等特点。
2)神经网络路径规划
神经网络已经被应用到很多的工程领域,机器人领域当然也不例外。神经网络在路径规划中的应用也很多。Tse为清扫移动机器人从一个地方到另外一个地方的运输,提出了BP神经网络,这个模型通过自学习能进行自主导航的路径规划。避障的完全遍历路径规划能够通过离线学习达到,并且有运动行为,路线规划和全局路径规划三个步骤。在运动行为阶段机器人通过各种传感器采集3d环境信息,然后把这些信息输入到BP神经网络中,机器人可以清扫周边的区域直到周边没有未清扫区域。在路线规划阶段,清洁机器人要决定一条最短的路径通向工作空间中其他未清扫区域,在全局路径规划中,产生一个全局环境地图,然后机器人从起始点开始,清扫整个工作空间。
3)遗传算法
遗传算法是由JohnH oland在70年代早期发展起来的一种自然选择和群体遗传机理的搜索算法。它模拟了自然选择和自然遗传过程中发生的繁殖,交配和突变现象。它将每个可能的解看作是群体(所有可能解)中的一个个体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,给出一个适合值。开始时总是随机地产生一些个体(即候选解),根据这些个体的适合度利用遗传算法(选择、交叉、变异)对这些个体进行交叉组合,得到一个新的个体。这一群新的个体由于继承了上一代的一些优良性质,因而明显优于上一代,这样逐步朝着更优解的方向
- 扫地机器人室内定位技术解析(05-08)
- 揭秘扫地机器人是如何进行室内定位的(09-25)
- 如何正确选购扫地机器人之规划式机器人篇(10-02)
- 揭秘扫地机器人是如何做室内定位的(10-23)
- 一篇文章带你认识“扫地机器人”(11-13)
- 扫地机器人的三大侦测感应系统原理(04-16)