微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > ADI医疗应用:检测并区分心脏起搏伪像

ADI医疗应用:检测并区分心脏起搏伪像

时间:11-17 来源:ADI 点击:

测量的正常值。

图7. 再同步器件在盐水箱捕获的起搏信号

第一个脉冲是心房,第二个脉冲是右心室,第三个脉冲是左心室。导联线置于盐水箱中,其矢量经过优化以便把脉冲清晰地显示出来。负向脉冲为起搏,正向脉冲为再充电。心房脉冲的幅度略大于其他两个脉冲的幅度,因为导联线的矢量稍微好于两根心室导联线,但在实际应用中,再同步器件中的全部三个起搏输出都编程为相同的幅度和宽度。对于真正的患者,每根起搏器导联线的幅度和宽度一般都是不同的。

检测起搏伪像

在对目标信号的形态和缘由有了初步了解之后,我们可以集中探讨如何检测起搏伪像这个话题了。以符合成本效益的方式检测所有起搏伪像并抑制所有可能的噪声源是不可能做到的,这是其性质使然。部分难点在于,起搏检测系统必须监控多个腔室,检测过程中会遇到干扰信号,而且不同制造商生产的起搏器种类繁多。伪像的检测方案从硬件解决方案到数字算法,十分广泛。接下来,我们将对此进行详细讨论。

心脏再同步器件所用的起搏导联线不可能都具有相同的矢量。右心房导联线通常与导线线II对齐,但有时也可能直接指向胸部以外,因而可能需要Vx矢量才能看见。右心室导联线通常置于右心室顶部,因而经常与导联线II对齐。从冠状窦穿过的左心室起搏导联线实际上位于左心室的外部。通常情况下,该导联线与导联线II对齐,但其方向却可能是V轴向。植入式除颤器和再同步器件的起搏导联线有时置于心脏中未发生梗塞的区域。把它们置于梗塞区域周围,这是该系统采用三个矢量并要求高性能起搏伪像检测功能的原因所在。

一个主要噪声源是多数植入式心脏器件所使用的H场遥测方案。其他噪声源包括呼吸胸阻抗测量、电灼器和与患者相连的其他医疗设备带来的传导噪声。

此外,每家起搏器制造商都采用不同的遥测方案,使起搏伪像检测变得更加复杂。在有些情况下,一家制造商可能针对不同的植入式器件型号采用多种不同的遥测系统。实际上,许多植入式器件可能同时采用H场遥测以及MICS频段或ISM频段遥测进行通信。不同型号采用不同的H场遥测方案,这种情况使得滤波器的设计变得十分困难。心电图器件必须为CF级,但其他医疗器件则可能是B级或BF级,而且其较高的泄漏电流可能干扰心电图采集设备的性能。

ADAS1000心电图模拟前端包含起搏伪像检测算法

ADAS1000(图8)是一款5通道心电图(ECG)模拟前端(AFE),旨在帮助解决新一代低功耗、低噪声、高性能系留式和便携式ECG系统设计人员面对的部分挑战。ADAS1000专门针对监控级和诊断级心电图测量而设计,由5个电极输入和1个专用右腿驱动(RLD)输出参考电极构成。

图8. ADAS1000功能框图

ADAS1000不但支持基本的心电图信号监控元件,还配有多种功能,比如前面讨论过的呼吸测量(胸阻抗测量)、导联线/电极连接状态、内部校准、起搏伪像检测功能等。

一个ADAS1000支持5个电极输入,为进行传统的6导联心电图测量提供了方便。通过另外级联一个ADAS1000-2(辅助)器件,系统可以进行真正的12导联测量;通过级联多个器件(3个及以上),系统可测量15条及以上的导联线。有关ADAS1000不同变体的详情,请参阅表1。

表1. ADAS1000现有型号概览

ADAS1000的呼吸特性能够测量患者的胸阻抗变化,从而显示出呼吸的程度或有无缺失。呼吸功能的核心是在可编程频率(46 kHz至64 kHz)下集成DAC(数模数据器)呼吸驱动,以及有利于简化这种复杂测量的专用模数测量电路。信号经过解调,作为幅度和相位信息提供,由此可以确定相应的呼吸信息,从而得到具体的线缆参数。利用内部电容,电路能够检测最小为200 mΩ的分辨率——使用外部电容时,甚至可以检测更精确的分辨率——而且开关方案十分灵活,可对三根导联线(I、II、III)之一进行测量。

起搏检测算法

器件的前端包含一种数字起搏器伪像检测算法,可以检测到宽度范围为100 μs至2 ms、幅度范围为400 μV至1000 mV的起搏伪像——符合上述AAMI和IEC标准。根据测试结果和医师意见,这些限制要比医用标准宽松许多。

起搏检测算法在四根可能的导联线(I、II、III或aVF)中的三根上运行三个数字算法实例。在高频心电图数据上运行,与内部抽取和滤波并行运行。该算法设计用于检测并测量宽度范围为100 μs至2 ms、幅度范围为400 μV至1000 mV的起搏伪像,返回一个标志,用以表示是在一根还是多根导联线上检测到起搏信号,同时返回检测到的信号的高度和宽度。对于希

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top