便携设备中反馈网络和扩谱调制技术的应用
前言
当今利用反馈网络与频率扩展技术改善开关的EMI己在便携设备中的开关稳压器与现代D类放大器中获得了应用。这是什么原因?
现代D类放大器的高效特性,在日新月异的多媒体时代新潮中己成为便携式和大功率应用的理想选择。之所以这样是因许多现代D类放大器采用先进的扩谱调制技术,可使各种应用免去外部滤波器并降低电磁于扰(EMl)。而省掉外部滤波器器不仅降低了电路板空间要求,同时大幅降低了很多便携式/紧凑型应用的成本。
由于开关稳压器能极大地节省空间并具有极低的功耗,则此稳压器正逐步取代线性稳压器,而进入各种新型应用中。但开关稳压器有一个缺点,其内部开关电流可能产生EMI。EMI的峰值能量集中在开关频率上,降低EMI的传统方法是谨慎处理接地、屏蔽和滤波。以上方法以控制和抑制稳压器内部开关电流所产生的辐射为主。此外,降低开关电流的幅度和改变频率也能降低EMI。但确切地说,多相同步和扩展频谱频率调制(SSEM)及反馈网络技术是降低EMI的两种强有力的工具。此外,降低开关电流的幅度和改变频率也能降低EMI。
值此本文仅对其反馈技术、扩谱调制技术及新一代无滤波器D类放大器分析说明。因为对D类放大器及其最新的技术发展有一个基本理解,将有助于设计者为具体应用选择合适的放大器,并正确权衡某些功能特性的优势和劣势。为此首先应了介基于PWM方式的传统D类放大器存在的问题。
1、传统D类放大器存在的问题
传统D类放大器的一个主要缺点就是它需要外部LC滤波器。这不仅增加了方案总成本和电路板空间,也可能因滤波元件的非线性而引入额外失真。很多D类放大器还会使用全桥输出级。全桥电路使用两个半桥输出级,并以差分方式驱动负载。这种负载连接方式通常称为桥接负载(BTL)。全桥结构是通过转换负载的导通路径来工作的。因此负载电流可以双向流动,无需负电源或隔直电容。传统的、基于PWM的BTL型D类放大器各输出波形。各输出波形彼此互补,从而在负载两端产生一个差分PWM信号。与半桥式拓扑类似,输出端需要一个外部LC滤波器,用于提取低频音频信号并防止在负载上耗散高频能量。
与所有传统D类放大器一样,基于PWM方式的典型D类放大器需要外部滤波元件,会产生EMI/EMC兼容性问题,并且THD+N性能较差,因此与线性放大器相比,它的高效优势大为失色。然而,现代D类放大器采用先进的调制和反馈技术,可很好地缓解上述问题。
2、利用反馈网络改善性能
许多D类放大器采用PWM输出至器件输入的负反馈环路。闭环方案不仅可以改善器件的线性,而且使器件具备电源抑制能力。开环放大器却正相反,它的电源抑制能力微乎其微。在闭环拓扑中,因为会检测输出波形并将其反馈至放大器的输入端,所以能够在输出端检测到电源的偏离情况,并通过控制环路对输出进行校正。闭环设计的优势是以可能出现的稳定性问题为代价的,这也是所有反馈系统共同面临的问题。因此必须精心设计控制环路并进行补偿,确保在任何工作条件下都能保持稳定。
典型的D类放大器采用具有噪声整形功能的反馈环路,可极大地降低由脉宽调制器、输出级以及电源电压偏离的非线性所引入的带内噪声。这种拓扑与用在∑-△调制器中的噪声整形类似。为阐明噪声整形功能,图1给出了为现代D类放大反馈补偿回路以传递函数形式表达的示意图,即一个1阶噪声整形器的简化框图。反馈网络通常包含一个电阻分压网络,但为简便起见,图1的反馈比例为1。由于理想积分器的增益与频率成反比,图中积分器的传递函数也被简化为1/s。同时假定PWM模块具有单位增益,并且在控制环路中具有零相位偏移。使用基本的控制模块分析方法,可得到以下输出表达式:
由等式1可知,噪声项En(s)与一个高通滤波器函数(噪声传递函数)相乘,而输入项VIN(s)与一个低通滤波器函数(信号传递函数)相乘。噪声传递函数的高通滤波器对D类放大器的噪声进行整形。如果输出滤波器的截止频率选取得当,大部分噪声会被推至带外(见图1右上角坐标糸统)。上述例子使用的是1阶噪声整形器,而多数现代D类放大器采用高阶噪声整形拓扑,以便进一步优化线性度和电源抑制特性。
3、新型无滤波器D类放大器的导出
传统D类放大器的一个主要缺点就是它需要外部LC滤波器。这不仅增加了方案总成本和电路板空间,也可能因滤波元件的非线性而引入额外失真。幸好,很多现代D类放大器采用了先进的"免滤波器"调制方案,从而省掉或至少是最大限度降低了外部滤波器要求。图2给出免滤波器调制器拓扑的简
- 为EMI敏感和高速SERDES系统供电(08-17)
- EMI噪声分析及EMI滤波器的设计(10-07)
- 医疗电子中电源的选择与典型应用(10-18)
- 电路设计中的EMI、EMS和EMC(12-17)
- 电子工程师在其设计中所面临的难题(02-17)
- X电容和Y电容介绍(08-12)