微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 特定人语音识别技术在汽车控制上的应用

特定人语音识别技术在汽车控制上的应用

时间:02-09 来源:本站整理 点击:

别的控制命令词串。针对HMM模型参数通常采用的判决条件是最大后验概率,用Viterbi算法实现。

  2.4 后处理单元

  充分利用每个说话人的声道参数和词条中各状态持续时间的概率分布来改进系统的识别率。

3 系统的实现

  由于汽车的控制命令是有限的词条和数字串的组合, 对这些语音命令的识别属于特定人小词汇量的连接词的识别以及与文本有关的说话人确认,不论是从目前的DSP运算速度还是存储空间来说,实时实现这些语音命令的识别都是完全可能的。

  识别系统组成框图如图所示:在此系统中,对运算能力和存储单元要求非常高的语音识别部分完全由DSP完成。

图2 识别系统的组成框图

  框图中识别系统的功能是完成语音的输入、A/D转换及识别,系统中核心部分采用TMS320VC5410。其原因是它的运算速度和存储空间都能满足要求,同时它的一些并行运算硬件结构也非常适合语音识别的各种算法,程序和已经脱机训练好的HMM参数表及相应的词典存放在程序存储器中,数据存储器存放识别过程中的中间计算数据。A/D芯片采用TLC320AD50C, 里面含有A/D、D/A以及低通滤波器和采样保持电路。模拟语音信号的输入主要是通过传声器,保证语音门禁的安全性,转换后的数字语音数据以同步串行通信方式传送给DSP。如图2。

4 结束语

  语音控制汽车是未来的一种趋势。目前,将语音技术应用于汽车的产品只有在一些玩具中用到,由此可想利用语音技术进行汽车控制这一领域蕴涵着相当大的潜在市场。

  而且,说话人识别技术已经发展到可以应用到实际的阶段了,但目前对说话人识别的应用并不是很多。笔者尝试提出一种比较容易实现的方案,将说话人识别技术应用到实际中。但在实际应用中,说话人识别系统都面临一个共同的问题,即无法区分一个发音是现场发音还是录音回放。针对该现象,笔者提出的说话人识别系统可以有效地防止这种情况发生。具体实现说话人识别系统时,可采用随机或其它方法来生成提示文本。如随机的数字串,以使假冒者无法事先录音,增加驾驶的安全性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top