微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗26闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷
首页 > 硬件设计 > 硬件工程师文库 > 智能视频监控分析技术在港口中的应用

智能视频监控分析技术在港口中的应用

时间:10-24 来源:本站整理 点击:

  摘要:智能视频监控技术是基于图像处理、模式识别的新型视频监控技术。简而言之,就是发现图像中运动的物体,并对其跟踪、分析,及时发现"异常"行为,触发报警并采取其他措施进行干预。

  智能视频分析技术和现有监控技术的比较

  国内现有港口的视频监控系统主要由摄像机、光缆、矩阵、硬盘录像机和电视墙等组成。由于视频监控图像数量大,内容枯燥,现有系统即使配备值班人员,在大多数情况下仍处于无人观看的状态下。当犯罪事件发生时,从硬盘录像机中调取录像回放、取证变成系统主要的价值之一。即使值班人员在岗,由于人的生理特点,不可能长时间有效观察多路图像,很可能造成遗漏可疑事件,对安全形式产生错误判断。

  智能视频监控技术可以理解为用计算机来帮助值班人员"看"监控录像。现代计算机的高可靠性可以提供24小时不间断地保护。从根本上杜绝由于人员疲劳造成的遗漏问题。同时也可以防止出现监控人员内外勾结的可能性。

  现有的智能视频分析技术还不能替代人,它仍然需要人来辨识报警的性质,进而决定处置方式。它的价值在于大大降低了监控人员的工作强度,使监控质量有了质的提升。和传统视频监控系统相比,智能视频分析可以及时发现、甚至阻止犯罪行为的发生。这对港口等敏感、关键基础设施的意义是显而易见的。

  智能视频分析技术的功能及在港口的应用范围

  国内港口对视频监控系统的需求主要源于防盗、生产安全以及反恐的需要。在港口内的贵重物资,重点要害部门的监控都是较典型的应用场景。

  由于中国签署了索纳斯公约,所有出口到美国的港口的都要满足一定的安保标准。同时作为国民经济的重要环节,港口的防恐也被国内主要港口纳入到议事日程上来。

  主要功能

  目前市场上的智能视频分析系统通常都具有以下功能:

  1、图像采集/接口。绝大多少的智能视频分析算法是基于非压缩图像格式,如RGB或者YUV,所以图像信号在被采集以后不经过压缩直接送给视频分析单元。几乎所有的视频分析系统都自带有图像采集功能,通常是通过BNC输入模拟图像信号。现有的图像监控系统中图像信号通常是以压缩图像流的形式存在,可以将图像流解压还原成原始图像格式后再进行分析。

  2、运动物体检测。简单地说,运动检测就是发现图像中运动的物体,运动物体可以简单定义为图像中变化的部分。一些初级的运动检测算法就是基于这些概念,此类方法的误报警率太高,不适合用作实时报警系统。

  并不是所有图像中的变化都是我们感兴趣的运动物体,例如由摄像机自身引入的变化,它包括像素噪声,摄像机自动光圈控制电路引起的整体亮度变化,图像传输中引入的高低频周期噪声信号,红外摄像机周期校准所带来的突变等。外界环境引入的变化包括地面光照在多云天气里迅速的变化,运动物体阴影,水面波浪或者波光粼粼现象,陆地上树枝的摆动,夜间汽车大灯造成的光晕,雨雪天气等现象。

  另外摄像机在大风天,尤其是高灯杆上容易抖动,由上述这些现象造成的图像变化是应该被过滤掉的,它们可以通过算法或者其它技术手段加以解决。

  从算法的角度来看,可以简单地分为两大类。一类是建立背景模型,通过和背景模型相对比来发现运动物体。另一类是通过"光流"法,通过发现运动物体对光流场的影响来发现运动物体。另外就是介于两者之间或者两者结合的方法。

  3、多物体跟踪。跟踪实质上就是将在每一帧上发现的同一物体沿时间顺序串起来。此领域本身就是一个相对独立的活跃的研究领域。主要研究方向是在复杂环境下,如多个运动物体,多个摄像机,运动物体之间互相遮挡,消失及重现等情况下进行有效跟踪。

  在实际监控应用中,尤其是对一些入侵报警的应用案例中,对跟踪算法的要求比较低。现有的系统对运动物体"融合"及其它复杂应用场景的跟踪效果并不理想。但是参照以往技术发展速度,这方面会很快完善起来。

  4、行为特征分析。行为特征分析是从图像中寻找满足预先设定的行为特征的事件。目前市场上比较典型的应用包括:

  (1)分类。判断运动物体是人、车、船只、飞机。停止或者突然加速,例如车辆在隧道或者公路上抛锚,大街上抢劫得手后逃跑等场景。

  (2)徘徊。如在敏感区域外观察的人员。对正常通过的行人、车辆不报警。

  (3)遗留物。如在机场,油库等地放置爆炸物然后离开。

  (4)物品遗失。如博物馆的贵重展品当发现展品消失后系统会立刻报警。

  (5)人数统计。如对进入超市等场所的人数进行统计,并结合销售数据绘制一天当中平均消费额曲线。

(6)人群密度。如当*人员过多时报警,或者人群突然散开出现异常情况

鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top