微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 软件无线电 > 软件无线电的主要原理及技术

软件无线电的主要原理及技术

时间:12-23 来源:mwrf搜集整理 点击:

摘要:本文主要介绍了软件无线电的概念、主要原理、关键技术及在生活中的广泛应用。它是以开放性、标准化、模块化、通用性、可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。首先介绍了软件无线电的理论基础,即带通采样理论,多速率处理信号技术,高效信号滤波,数字正交变换理论,这些都是软件无线电实现的理论基础,然后是其关键技术,宽带智能天线技术,A/D转换技术,数字上/下变频技术,数字信号处理部分,这些技术是实现软件无线电的关键和核心所在。最后,对其应用领域也进行了描述,指出其在个人移动通信,军事通信,电子站,雷达和信息加电中的巨大潜力。

软件无线电这个术语最早是美军为了解决海湾战争中多国部队各军种进行联合作战时遇到的互通互操作问题而提出的新概念。陆,海,空三军简单就工作频段来分,解决了互不干扰问题,但三军联合作战时互通,互联,互操作问题难以解决,于是1992年提出了软件无线电的最初设想,并于1995年美国国防高级研究计划局提出了SPEAKEASY计划,称之为易通话计划,其最终目的是开发一种能适应联合作战要求的三军统一的多频段,多模式电台,即MBMMR电台。进而实现联合战术无线电系统(简称JTRS),它是在MBMMR的基础上提出的一种战术通信系统。

软件无线电以开放性,标准化,模块化,通用性,可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,实现各种无线电功能,选用不同软件可实现不同功能,软件可以升级更新,硬件也可像计算机升级换代,可称为超级计算机。它是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。

理想软件无线电的结构框图:

\

一、软件无线电的理论基础

•  采样理论:由于软件无线电所覆盖的频率范围一般都要求比较宽,例如从0.1MHZ到2.2GHZ,只有具有这么宽的频段才能具有广泛的适应性。对于如此宽的频带采用Nyquist低通采样所需的采样速率至少要大于4.4GHZ,在目前很不实际。所以无法使用Nyquist采样定理,而必须采用带通采样。一种接近理想化的软件无线电设计方案称为射频直接带通采样软件无线电体制,在天线与A/D间只存在跟踪滤波器和放大器,与软件无线电所要求的A/D尽可能靠近天线的设计宗旨完全一致。

•  多速率信号处理:带通采样定理大大降低了所需的射频采样速率,但从软件无线电的要求来看,带通采样带宽应越宽越好,对信号有更宽的适应性,这样就应当使采样速率尽可能地宽。然而又会导致后续的信号处理速度跟不上,因此要对A/D后的数据流进行降速处理。抽取和内插是最基本最重要的基本理论,对于软件无线电的研究及数字下/上变频器的实现有重大作用。

整数倍抽取是把原始采样速序列x(n)每隔(D-1)个数据抽取一个,形成一个新序列xD(m),即xD(m)=x(mD),这样经过抽取的数据流速率只有后者的D分之一,显然大大降低了对后处理速度的要求,也提高了频域分辨率。这是软件无线电接收机的理论基础。

整数倍内插是在两个原始抽样点之间插入(I-1)个零值,也形成一个新序列xI(m),即xI(m)=x(m/I),经过内插大大提高了时域分辨率,也可以用来提高输出信号的频率。显然内插器起到了上变频作用。它是软件无线电发射机的理论基础。

整数倍抽取和内插都只是频率变换的一种特殊情况,实际中往往用到分数倍变换,它可通过先进行I倍内插,再进行D倍抽取来实现。(注意必须内插在前,以免引起信号失真)。

•  高效数字滤波:实现取样速率变换的主要问题是如何实现抽取前或内插后的数字滤波。FIR滤波器相对与IIR滤波器有许多独特优越性,线性相位,稳定性等。可采用窗函数法来设计,简单,直观,但滤波性能不是最佳。也可采用最佳滤波器的设计。半带滤波器适合于实现D=2的M幂次方倍的抽取或内插,计算效率也高实时性高。而在实际的抽取系统中抽取因子D往往不是2的M幂次方,此时可以积分梳状滤波器和半带滤波器结合起来使用。

•  数字正交变换理论:对一个实信号进行正交变换而用一个复解析信号来表示是因为从解析信号很容易获得三个特征参数:瞬时幅度,瞬时相位和瞬时频率,它们是信号分析,参数测量或识别解调的基矗窄带信号可用解析信号和基带信号表示,对于要满足高虚假抑制的要求,可采用数字正交混频的方法实现

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top