完全隔离式电导率测量数据采集系统
连接/参考器件
AD5934
250 kSPS、12位阻抗转换器网络分析仪
AD8606
精密、低噪声、轨到轨输入/输出、CMOS、运算放大器(双通道)
ADG715
CMOS、低电压、I2C控制、八通道单刀单掷开关
ADuM1250
双通道I2C数字隔离器
ADuM5000
2.5 kV、隔离式DC/DC转换器
评估和设计支持
电路评估板
CN-0349电路评估板(EVAL-CN0349-PMDZ)
SDP-I-PMOD转接板(SDP-PMD-IB1Z)
系统演示平台,SDP-B (EVAL-SDP-CB1Z)
设计和集成文件
原理图、布局文件、物料清单
电路功能与优势
图1显示的电路提供了完整可靠的数据采集解决方案,用于测量被测物的电导,包括温度校正。此电路非常适合测量液体的离子含量,以及进行水质分析和化学分析。
该设计针对高精度和低成本优化,仅使用5个有源器件。校准后,该电路总误差小于1% FSR.所有器件均具有小尺寸,因此该电路非常适合注重印刷电路板(PCB)空间的应用。该电路的数字输出是完全隔离的;因此,该电路不存在接地环路干扰问题,非常适合在恶劣工业环境下使用。
图1 用于电导率测量的完全隔离式数据采集系统
电路描述
图1中显示的电路集成了AD5934 12位阻抗转换器、ADG715八通道单刀单掷(SPST)开关、AD8606轨到轨运算放大器、ADuM1250双通道I2C隔离器以及ADuM5000隔离式DC-DC转换器,形成用于电导率测量的完整数据采集系统。该电路具有板载8引脚IMOD连接器,可用于连接客户微处理器或现场可编程门阵列(FPGA)。
AD5934是一款高精度的阻抗转换器系统解决方案,片上集成一个可编程直接数字频率合成器(DDS)和一个12位、250 kSPS模数转换器(ADC)。可调频率发生器产生已知频率来激励外部复阻抗。片上DAC监控未知阻抗的电压和电流。AD5933是与1 MSPS ADC类似的器件。片上数字信号处理器(DSP)引擎计算离散傅里叶变换(DFT)。DFT算法在每个输出频率返回一个实部(R)数据字和一个虚部(I)数据字。
选择AD8606运算放大器的原因是该器件具有低失调电压(最大值65μV)、低偏置电流(最大值1 pA)和低噪声(最大值12 nV/√Hz)等特性。
ADG715是一款互补金属氧化物半导体(CMOS)、8通道单刀单掷开关,通过双线串行接口控制,该接口可兼容I2C接口标准。该器件的功耗较低,具有2.7 V至5.5 V的低工作电源范围和低导通电阻(通常为2.5Ω),采用小型24引脚TSSOP封装,因而成为诸多应用的理想之选。
ADuM5000是一款隔离式DC/DC转换器,具有3.3 V或5 V输出,基于ADI公司的isoPower技术,采用16引脚SOIC封装。
ADuM1250是一款支持热插拔的数字隔离器,提供非闩锁双向通信通道,且与I2C接口兼容,基于ADI公司的iCoupler芯片级变压器技术,采用8引脚SOIC封装。
电导率理论
材料或液体的电阻率ρ定义为:当立方体形状的材料反面完全导电接触时,该材料的电阻。其他形状材料的电阻可按以下方式计算:
R =ρL/A
其中:
L是接触距离。
A是接触面积。
电阻率的测量单位为Ωcm.当接触1 cm×1 cm×1 cm立方体的反面时,1Ωcm材料的电阻为1Ω。
电导是电阻的倒数,电导率是电阻率的倒数。
所有水溶液都在一定程度上导电。溶液导电能力的测量指标称为电导,它是电阻的倒数。电导的测量单位为西门子(缩写为"S")。向纯水中添加电解质,例如盐、酸或碱,可以提高电导并降低电阻。电阻率表示为Ωcm,电导率表示为S/cm、mS/cm或μS/cm.
在此电路笔记中,我们使用Y作为电导率的通用符号,测量单位为S/cm、mS/cm或μS/cm.但在很多情况下,为了方便起见,我们会省略距离项,电导率仅表示为S、mS或μS.
电导率系统通过连接到沉浸在溶液中传感器的电子元件来测量电导。分析仪电路对传感器施加交流电压,并测量产生的电流大小,电流与电导率相关。由于电导率具有很大温度系数(最高达到4%/°C),因此电路中集成了必需的温度传感器,用于将读数调整为标准温度,通常为25°C (77°F)。对溶液进行测量时,必须考虑水本身的电导率的温度系数。为了精确地补偿温度,必须使用第二个温度传感器和补偿网络。
电导率传感器
接触型传感器通常包括相互绝缘的两个电极。电极通常为316型不锈钢、钛钯合金或石墨,具有特定的大小和间距,以提供已知的电导池常数。从理论上说,1.0/cm的电导池常数表示两个电极,每个电极面积为1平方厘米,间距为1厘米。对于特定的工作范围,电导池常数必须与分析仪相匹配。例如,如果在电导率为1μS/cm的纯水中使用电导池常数为1.0/cm的传感器,则电导池的
- 为什么要进行信号调理?(09-30)
- 利用软件工具实现数据的采集和分析 (09-28)
- 高精度微功耗数据采集系统设计与应用(11-03)
- 多通道数据采集系统(11-12)
- 在LabVIEW中驱动数据采集卡的三种方法(04-21)
- 基于dsPIC30F的高精度数据采集器的研制(10-23)