微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 完全隔离式电导率测量数据采集系统

完全隔离式电导率测量数据采集系统

时间:06-07 来源:3721RD 点击:

AD5934的I-V放大级还可能轻微增加信号链的误差。I-V转换级易受放大器的偏置电流、失调电压和共模抑制比(CMRR)影响。通过选择适当的外部分立放大器(U2B)来执行I-V转换,可以提高精度。选择AD8606的原因是该器件具有低失调电压(最大值65μV)、低偏置电流(最大值1 pA)、高CMRR(通常为95 dB)、低噪声(最大值12 nV/√Hz)等特性。该内部放大器随后可配置成一个简单的反相增益级。如AN-1252应用笔记中所述,RFB仍根据系统的整体增益来选择。I-V转换器的输入和输出必须精确偏置为VDD/2.R12和R13(10 kΩ)两者均使用精度0.1%的电阻作为偏置电阻。

精度很大程度上取决于未知阻抗范围(电导率范围)相对于校准电阻RCAL的大小幅度(参见电路笔记CN-0217和应用笔记AN-1252)。选择接近未知阻抗的RCAL可实现更精确的测量,即以RCAL为中心的未知阻抗范围越小,测量精度越高。因此,对于较大的未知阻抗范围,可在各种RCAL电阻之间切换,如图2中所示。在RCAL增益系数计算期间可通过校准消除开关的导通电阻(RON)误差。使用不同反馈电阻(RFB)值(见图2)可优化ADC所获得信号动态范围。

为了改进图1中所示的大范围电导的精度,使用三个校准电阻RCAL(100Ω、1 kΩ和10 kΩ)、两个反馈电阻RFB(100Ω和10 kΩ),由软件和ADG715八通道开关控制。电路设置为在两个范围内运行:

低范围:μS至mS,RFB = 1 kΩ,RCAL =1 kΩ和10 kΩ

低范围:μS至mS,RFB = 1 kΩ,RCAL =1 kΩ和10 kΩ

使用这两个范围,整体测量范围为25μS t至200 mS,精度高于1% FSR,如测试数据所示。可以选择RCAL和RFB的其他值以覆盖不同的范围。

CN-0349评估软件允许电路在三种模式下工作。在模式1(图2中开关的位置1)中,低范围和高范围的校准程序都是自动执行的。在模式2(图2中开关的位置2)中,溶液的温度测量使用外部Pt100 RTD温度传感器自动执行。在模式3(图2中开关的位置3)中,测量溶液的实际电导率。

校准程序

对于图1显示的电路,校准程序使用三个精密电阻RCAL(R3 = 100Ω、R4 = 1 kΩ和R7 = 10 kΩ)进行三点校准,最大程度地减小失调和增益误差,在每个范围内使系统线性化。对于每个范围,校准程序在输入范围的开头和末尾执行,使用两个参考信号(校准电阻)YL和YH,如图3所示。参考信号的值预加载在微控制器的存储器中,也可以通过键盘输入。

对于低范围校准点,参考信号是YL(例如,YL = 1/R7 = 1/10 000Ω= 0.1 mS)。当参考信号YL连接时,将获取与参考信号YL相对应的代码NL(幅值ML)。同样,对于高范围校准点,参考是信号YH(例如,YH = 1/R4 = 1/1000Ω= 1 mS)。当参考信号YH连接时,将获取与参考信号YH相对应的代码NH(幅值MH)。



图3 电导率测量的两点校准

然后按照公式1计算增益系数(GF)


对于高范围,程序是相同的,但参考信号如下:YL = 1/R4 = 1/1000Ω= 1 mS,YH = 1/R3 = 1/100Ω= 10 mS.

为了在低电导范围(高电阻)内实现更宽的测量范围,我们使用AD5934的2 V p-p激励输出电压。为了在高电导范围(低电阻)内扩大测量范围,在保持2 V p-p激励输出电压的同时,还串行连接了一个精密电阻R2 = 100Ω,具有未知电导YX.可以使用其他输出电压范围来优化高电导范围(低电阻)内的ADC动态范围。

测试数据结果

使用图1中的校准值和反馈电阻,按照"电路设计"部分和"校准程序"部分中所述,我们进行了一系列试验。

表1、表2和表3显示了低范围模式和高范围模式下的结果。表4、表5和表6显示了每个范围的相对误差和相应读数。具有0.1%或0.2%容差的精密非感性电阻定义了输入(未知电导YX)。表中使用的符号定义如下:

RX:参考电阻

YX:计算的参考电导率

YR:测量的电导率(读数)

RR:测量的电阻(读数)

RR:校正的电阻= RR– RR(对于RX = 0)

低范围电导率测量

表1显示了低范围测量的结果,图4显示了范围的相对误差百分比以及读数的相对误差百分比。在从25μS到2500μS的低范围中,读数的误差百分比不超过0.5%.



图4 低范围内的相对误差

表1.从25μS至2.5 mS的低范围测量数据,RFB = 1 kΩ,RCAL1 = 1 kΩ,RCAL2 = 10 kΩ

高范围电导率测量

表2显示了高范围测量的结果,图5显示了范围的相对误差百分比以及读数的相对误差百分比。在从0.2 mS到200 mS的高范围中,读数的误差百分比不超过3%.



图5 高范围内的相对误差

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top