基于LabVIEW的水环境因子无线监测系统设计
据,采集时间到,系统进行数据采集,采集完毕后对数据进行分析处理并打包,通过无线通信模块发送,发送完后,进入下一轮采集工作。
pH的采集选用上海力琼电子有限公司生产的PHG-96FS型测试仪,其输出电流为I=pHx(8/7)+4.00 mA。通过电流/电压转换器将pH测试仪输出的电流转化为对应的电压接到单片机的P1口,将P1口设置为AD模式,可得模拟输入电压Vin=pHx[(8/7+4)]xRx1 000。然后,根据A/D模拟输入量Vin与数字量输出D的关系D=Vinx1 024/Vref,Vref为单片机A/D模块的参考电压,其值为Vref=5 V,最后得到pH的计算式为pH= 35xD/(1 024xRx36 000)。其部分程序如下:
3.2 pH显示程序
PHG-96FS测试仪的分辨率为0.01 pH,则本系统也将计算得到的pH保留小数点后两位小数,具体的做法为将temp=35*gedata/(1 024*R *36000)的分子乘以100,即temp=35*gedata/(1 024*R*360),其部分程序如下:
3.3 下位机串口通信程序设计
定义串行通信的波特率和通信模式是下位机串口通信的一个重要工作,本系统设计的波特率为57 600位/秒,即上下位机传送数据的速度是每秒发送57 600位。另外,使用的是串行方式1,因此波特率的选择取决于定时器/计数器1的溢出速率和电源控制寄存器PCON。本系统的晶振频率为11.059 2 MHz,可得重装数值N=0xFF。当接收到无线模块传来的采集信号时,下位机便将采集到的数据解包,通过串口传送给上位机,LabVIEW将数据转化为pH并通过前面板显示。其程序流程图如图5所示。
3.4 基于LabVIEW的PC机软件设计
LabVIEW是美国国家仪器(National Instruments,NI)公司开发的一种图形化编程开发工具,采用数据流的方法来描述程序的执行。Lab VIEW除具有灵活而强大的数据采集和信号处理能力外,搭建测试平台时还具有开发时间短、调试轻松、程序扩展方便等特点,因此,广泛应用于各领域的数据采集、仪器控制、测量分析、数据显示与存储等方面。
本系统LabVIEW程序设计包括前面板和程序流程框图两部分。前面板是图形用户界面,由输入控件和显示控件组成,界面上有用户输入和显示输出两类对象,具体表现有开关、旋钮、图形,以及其他控制(control)和显示对象(indicator)。本文以pH监测为例,虚拟仪器的前面板设计如图6所示。面板中包括串口选择、数据采集、pH校正值、历史数据查询、系统退出等输入控制件,以及pH的实时显示等。
程序流程框图提供虚拟仪器的图形化源程序,由端口、节点、图框和连线构成。其中端口用于与前面板的控制和显示传递数据,节点用于实现函数和功能调用,图框用于实现结构化程序控制命令,连线代表程序执行过程中的数据流,用于定义框图内的数据流动方向。本系统的程序流程框设计如图7所示,程序流程中除了常规的程序流程控制之外,还采用了数据包的解压、数据的搜索匹配和数据的滤波处理等。
4 结束语
本系统以LabVIEW为开发平台,采用无线收发模块NRF24L01,实现了对水产养殖环境因子pH的实时采集、显示和存储,以及历史数据查询等,克服了传统有线监控系统带来的布线复杂、监测不便等不利影响。经测试表明,该系统运行稳定、数据显示准确,所测数据能为pH的控制和水产养殖决策提供依据。另外,该系统界面友好、操作简便、易扩展、性价比高,具有较好的应用前景。
- 基于LabVIEW RT的自定义流程测控系统(10-30)
- 基于LabVIEW的语音分析平台的实现(10-30)
- 基于示波器卡和LabVIEW的马达编码器测试系统(11-06)
- 基于虚拟仪器的网络虚拟实验室构建(11-06)
- 运用LabView控制DS3900串口通信模块(02-02)
- 采用模块化仪器,对新兴音频和视频应用进行测试(02-19)