基于LabVIEW和C8051F350的纺丝张力监控系统
3.2 通信模块设计
上机位采用PC机,控制器与上位机的通信采用RS 232串口通信。控制器采集的数据通过串口通信发送到上位机,实现数据自动上传。采用双通道多次转换,对两个通道进行多次采样取平均值,数据采集的时间间隔通过定时器来完成,发送数据和接收数据都通过中断方式实现。
3.3 上位机软件平台LabVIEW及软件设计
上位机软件平台采用NI公司的LabVIEW。LabVIEW采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。LabVI-EW用图标表示函数,用连线表示数据流向,提供了很多外观与传统仪器类似的控件,可方便地创建用户界面。用户界面在LabVIEW中被称为前面板。图4为纺丝张力监控系统的前面板,图中显示监控1状态界面,监控2界面包括表格显示多路张力信号数据。
系统设计采用表单文件对数据进行存储记录,有强大的文件I/O函数,可以将采集到的数据以一定的格式存储在文件中保存,用以满足用户不同的文件操作需要。表单文件可将数据数组转换成ASCII码存放在电子表格文件中,设计中将以测量日期作为文件的命名,每一天测量的数据存放在一个表格中。用户可以通过前面板界面输入日期来查看历史数据,还可以通过Excel等第三方软件进行查看。其他界面选区卡可实现显示纺丝卷筒落筒记录,跟踪调试以及系统信息,跟踪调试界面设计参数修改接口。当落筒或者断丝后,系统产生落筒记录,记录信息包含产品相关生产信息、张力信息等。同时将落筒记录和异常点数据上传到网络数据库,再通过网络分析系统使用以上的原始采集信息作为统计分析基础,根据目前厂家对产量、质量的分析需求提供不同的分析报表和图表。
4 结论
(1)利用C8051F350的全差分24位∑-△模/数转换器及抽取滤波器,有效地抑制各种干扰因素的影响,可以稳定地进行张力信号采集与恒流控制输出;
(2)利用LabVIEW图形化开发平台开发上位机控制软件,可方便快捷地实现控制系统及人机界面设计;
(3)张力控制系统经试验和实际运行证明,系统结构简单,设计合理,达到了所要求的张力控制。
- 基于LabVIEW RT的自定义流程测控系统(10-30)
- 基于LabVIEW的语音分析平台的实现(10-30)
- 基于示波器卡和LabVIEW的马达编码器测试系统(11-06)
- 基于虚拟仪器的网络虚拟实验室构建(11-06)
- 运用LabView控制DS3900串口通信模块(02-02)
- 采用模块化仪器,对新兴音频和视频应用进行测试(02-19)