基于PSoC的防高压电容测量设计与实现
设计一款只测电容容量参数,而且能防高压的电容测试系统,那么问题的关键就集中到一点:具有一个大范围,高精准,可编程的恒流源。事实上,我们在上面介绍PSoC时已经提到了,PSoC都具有可实现充电法测量电路所需的比较器,计数器之外的可编程模拟和数字模块之外,还具有可编程恒流源(IDAC)硬件资源。因此,基于PSoC来实现一个耐高压,宽量程,高精度,低成本的电容容量测试系统会是一件很容易做到的事情。
基于PSoC的防高压电容容量测量方案实现
根据我们上面对基于PSoC的防高压电容容量测量方案的可行性,实现拓朴以及PSoC内部架构的阐述,我们可以知道要实现这一方案需要做如下几部分设计:防高压测量外围电路设计,PSoC模块配置设计和测量软件设计。下面我们将对其分别进行介绍。
防高压电容测量外围电路设计
基于PSoC进行电容测量的外围电路,充电测量时,PSoC内的IDAC(可编程恒流源)通过Captest引脚输出恒定电流经过R13,R12分别对待测电容CX和已知电容容量C8充电,Captest引脚上的电压就会线性增高,一旦达到参考电压Vref时,PSoC内部的比较器就会翻转产生控制信号给PSoC内的微控制器,微控制器就会将计数结果取走进行容值计算与显示,从而容值测量;同时比较器翻转中断信号也会触发放电控制引脚Ctrl置高,将NMOS管导通,为CX,C8提供放电电路。在此还有一个PMOS管未提及的作用。这个PMOS管就是用来专门为了防高压而设计的。当带高压电荷(比VDD电源高的电压电荷)的待测电容CX放到测试夹具进行测试时,PMOS管的源极S电压就变为待测电容上的电压值,由于PMOS管的栅极电压近似为VDD,因此PMOS管就会瞬间导通,一直导通到CX上的电压低于VDD,PMOS管才会关闭。所以PMOS管构成了高压硬件放电通路,从而确保PSoC不会受到高压电荷长时间的冲击。图中电阻R12为330Ω,PMOS管的工作电流为1A,因此,采用该电路可耐1A×330Ω=330V的高压电荷。330V的耐压指标对普通的电子工程师来讲一般是足够了,因为常用的电子电器产品的交流电为220V。当然如果还需要耐更高的电压信号,可以将R12电阻加大或选择导通电流更大的PMOS管。
PSoC模块配置设计
PSoC内部模块配置图,如上所述,充电测量电路主要由恒流源,比较器和计数器组成。由于PSoC内部集成了可编程恒流源硬件模块,因此不需要配置,所以我们只需用PSoC内部可编程模块构建比较器和计数器部分。事实上,在PSoC开发软件Designer里已构建好了包括比较器和计数器等大量的用户模块。用户只需在PSoCDesigner里选择比较器和计数器,然后放置和参数配置,最后点击底层驱动生成即可完成比较器和计数器的硬件构造和生成供应用程序调用的底层驱动接口应用函数。
结语
该方案具有电路简单,外围元器件少,成本低,耐高压,宽量程,高精度,测量方便等特点,可方便地实现单片电容容量测试产品或子系统。
发布者:小宇
电容测量 PSoC Cypress半导体 相关文章:
- LM741构成的电容测量电路设计(04-20)
- 精密电容测量仪(01-28)
- 电容测量注意事项(01-12)
- 微小电容测量方法介绍(01-09)
- 基于LM741的电容测量电路设计(05-13)
- 测量位置的PSoC微控制器与LVDT(07-06)