微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 微小电容测量方法介绍

微小电容测量方法介绍

时间:01-09 来源:互联网 点击:
1 充/放电电容测量电路

充/放电电容测量电路基本原理如图1所示。



由CMOS开关S1,将未知电容Cx充电至Ve,再由第二个CMOS开关S2放电至电荷检测器。在一个信号充/放电周期内从Cx传输到检波器的电荷量Q=Ve·Cx,在时钟脉冲控制下,充/放电过程以频率f=1/T重复进行,因而平均电流Im=Ve·Cx·f,该电流被转换成电压并被平滑,最后给出一个直流输出电压 Vo=Rf·Im=Rf·Ve·Cx·f(Rf为检波器的反馈电阻) 。

充/放电电容测量电路典型的例子为差动式直流充放电C/V转换电路,如图2所示。



Cs1和Cs2分别为源极板和检测极板与地间的等效杂散电容(通过分析可知,它们不影响电容Cx的测量)。S1-S4是CMOS开关,S1和S3同步,S2和S3同步,它们的通断受频率f的时钟信号控制,每个工作周期由充/放电组成。分析可得电路输出为

Vo=2KRfVeCxf (1)

式中,K为差分放大器D3的放大倍数。

该电路的主要优点是能有效地抑制杂散电容,而且电路结构简单,成本很低,经过软件补偿后电路稳定性较高,获取数据速度快。缺点是电路采用的是直流放大,存在较大的漂移;另外,充/放电是由CMOS开关控制,所以存在电荷注入问题。目前该电路已成功应用于6、8、12电极的ECT系统中。其典型分辩率可达3*10-15F。


2 AC电桥电容测量电路

AC电桥电容测量电路如图3所示,其原理是将被测电容在一个桥臂,可调的参考阻抗放在相邻的一个桥臂,二桥臂分别接到频率相同/幅值相同的信号源上,调节参考阻抗使桥路平衡,则被测桥臂中的阻抗与参与阻抗共轭相等。这种电路的主要优点是:精度高,适合作精密电容测量,可以做到高信噪比。



图3电路的缺点是无自动平衡措施,为此可采用图4所示的自动平衡AC电桥电容测量电路。



该系统输出Vd为一直流信号,ΔC为传感器的电容变化量。



式中,2/π为相敏因子。

结合平衡条件,在理论上输出Vd可写成



获得该电桥的自动平衡过程的步骤为:保证电桥未加载时ΔC=0,测量电桥非平衡值并利用公式(3)计算出电桥输出为零时所需的反馈信号Ve的值。重新测量桥路的输出,若输出为零,则桥路平衡;若输出不为零,重复上述测量步骤,直至桥路输出为零,即桥路平衡为止。该电桥电容测量电路原理上没有考虑消除杂散电容影响的问题,为此采取屏蔽电缆等复杂措施,而且其效果也不一定理想。通过实验测得其线性误差能达到±1*10-13F。


3 交流锁相放大电容测量电路

交流型的C/V转换电路基本原理如图5所示。



正弦信号Ui(t)对被测电容进行激励,激励电流流经由反馈电阻Rf、反馈电容Cf,和运放组成的检测器D转换成交流电压 Uo(t):



若jωRfCf>>1,则(4)式为



式(5)表明,输出电压值正比于被测电容值。为了能直接反映被测电容的变化量,目前常用的是带负反馈回路的C/V转换电路。这种电路的特点是抗杂散性、分辨率可高达0.4*10-15F。

由于采用交流放大器,所以低漂移、高信噪比,但电路较复杂,成本高,频率受限。


4 基于V/T变换的电容测量电路

测量电路基本原理如图6所示。



电流源Io为4DH型精密恒流管,它与电容C通过电子开关K串联构成闭合回路,电容C的两端连接到电压比较器P的输入端,测量过程如下:当K1闭合时,基准电压给电容充电至Uc=Us,然后K1断开,K2闭合,电容在电流源的作用下放电,单片机的内部计数器同时开始工作。当电流源对电容放电至Uc=0时,比较器翻转,计数器结束计数,计数值与电容放电时间成正比,计数脉冲与放电时间关系如图7所示。



电容电压Uc与放电电流Io的关系为:



令Uc=0,则有:



式中,N为计数器的读数;Tc为计数脉冲的周期;它是一个常数;在Us和Io为定值时,C与N成正比。

基于V/T变换的电容测量电路,对被测电容只进行一次充放电即可完成对被测电容的测量。采用了电子技术中准确度较高的时间测量原理,克服了传统测量微弱信号电路中放大器的稳定性不好、零点漂移大等缺点,且电路结构简单、测量精度和分辨率高。


5 基于混沌理论的恒流式混沌测量电路

恒流式混沌电路如图8所示。



其工作原理如下:当K1、K2断开时,K3闭合。电容C充电使Uc=Ux,然后K3断开,待周期为t的脉冲序列δ中的一个脉冲到达G(逻辑电路)时,G的输人信号使K2闭合,K1保持断开(此时相当于图9中的X1点),电容开始以-0.5Io的恒定电流放电。当Uc=0时,相当于电路中的A点,比较器翻转,输出电压Up由高电平变为底电平,Up的变化促使G变化,使G控制K1闭合、K2断开,此时电容C由恒定电流Io充电,使Uc按A-X2方向上升。当又一个脉冲到来时(相当于图8中X2点),G又开始变化,使K1断开、K2闭合,又一个放电充电过程开始。这样周而复始的放电充电使Uc的变化如图9所示,只要适当调整,Io和t就可以使电路处于混沌状态。



这种方法突出的优点是测量的分辨率高,测量的绝对误差不随被测电容值的变化而改变,对作为传感器的元件只要求稳定即可。当被测电容很大时,相对误差还会减小。此方法除了可以直接测量电容外,也可以作为电容式传感器测量其它电量和非电量。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top