微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 基于Hilbert变换的电压凹陷检测方法

基于Hilbert变换的电压凹陷检测方法

时间:06-20 来源:孙素军 李含善 任永峰 点击:

图1中:ua(t)表示系统侧a相电压;ua′(t)表示a相目标电压函数;uac(t)表示检测出的三相电压补偿量。

3 计算机仿真

  在实际电力系统中,由于电压凹陷多由单相接地故障引起。因此基于以上的理论分析及检测的基本原理,利用Matlab中的Simulink对相电压为220 V电力系统工频运行时发生单相接地短路故障的电压情况进行建模仿真。

3.1 仿真结果及分析

  当故障相电压短时下降,从而得到电压凹陷的波形如图2所示。

  仿真信号幅值为频率为50 Hz,采样频率为10 kHz,即每周期采样200点。从图2中可以看出,故障相电压在0.04 s时发生电压凹陷,凹陷幅度为20%,持续时间0.04 s。
图3和图4分别是用Hilbert检测法对电压凹陷的幅值检测结果和跳变起止时刻的检测结果。由仿真曲线可知,正常工频电压一旦有凹陷发生,其幅值就会发生改变。从而利用后差分就可准确地检测到电压凹陷的起止时刻。

  结果表明,这种检测方法的幅值检测结果变化到稳态值的时间基本上为0 ms,因此这种检测方法对DVR而言具有非常好的动态响应性能,并且能实时地产生补偿指令电压(如图5所示).满足DVR补偿装置的实时性要求。

  图6~图9为电压发生凹陷并伴随有谐波的检测结果及产生的补偿指令电压波形。

3.2 电压补偿分析

  目前关于DVR补偿电压的计算方法主要有3种:第一种完全电压补偿法,要求补偿后电压完全恢复到凹陷前负载电压。该补偿方法的优点是能保证凹陷前后负载电压的连续性,对于那些对电压幅值和波形连续性要求很高的负荷如相控整流设备等,是最佳的补偿策略。该方法的缺点是输出的电压相量和功率不受控制第二种最小电压补偿法,要求将系统凹陷电压的幅值补偿至额定电压,相位与凹陷电压一致。该方法的优点是补偿电压幅值最小、计算简单。缺点是输出功率不受控制,而且负载电压有相角偏移。第三种最小能量法,要求补偿后电压幅值达到额定电压幅值。该方法的优点是输出的能量最小。缺点是输出电压比较大,而且负载电压也有相角偏移。

  与前两种方法相比,最小能量法通过减少的有功输出,从而在一定的储能容量下,可以获得更长的凹陷补偿时间。在补偿电压凸起时,最小能量法也可以减少从系统吸收的有功,抑制或减少能量的倒灌。所谓能量倒灌,是指能量从系统向输送的过程。

  为了减少输出能量长期以来人们对最小能量法进行了研究,从最简单的单相最小能量法发展到三相最小能量法。在单相中,可以用电压相量来描述系统的电压凹陷,并根据相量来实现各种控制目标的优化。然而三相系统中由于电压凹陷情况比较复杂,电压存在不对称以及相角跳变,用单相的电压相量很难确切描述三相电压凹陷情况,单相的补偿方法无法应用到三相系统中。

  采用对称分量法对能量优化进行分析,直接将输出电压等效成正序补偿电压,没有考虑负序和零序电压的影响,理论计算与实际的输出有一定的误差。通过旋转三相参考电压的方法来提高的补偿范围,同时也考虑了负序和零序电压对输出电压的影响,并通过求取最优能量旋转角来减少输出的有功。无论是单相还是三相最小能量法,均没有考虑负载对相位跳变角的约束,导致补偿前后负载电压相位跳变角超出负载正常运行所能允许的范围。同时上述方法均将负载额定电压作为补偿目标,一旦电压凹陷的幅值超过的最大输出补偿电压,则无法补偿。针对以上缺点,结合负载正常运行对电压幅值和相角偏移的允许范围,利用最优补偿电压计算方法,可以扩大补偿范围、减少有功输出并能很好地抑制能量倒灌。

4 结 语

  针对DVR的电压凹陷检测,首次采用基于Hill3ert变换的检测方法。理论上省去了滤波器,避免了滤波器带来的延时。在此来用这种检测方法对常见的电压扰动如电压凹陷和含有谐波的电压凹陷进行快速检测。从仿真试验结果可知,该方法能够快速对凹陷电压信号的幅值进行检测,能准确地检测出电压凹陷发生的起止时刻,并且运算量较小,适合实时检测的需要。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top