汽车电子节气门控制系统ECU设计及其在ASR控制中的应用
电流最大为6 A;最高工作电压为40 V;最大输出频率为30 kHz。
(2)逻辑电压与驱动电压单独供电;内部集成续流二极管;输出短路保护。
(3)IHN为低电平时,芯片停止工作;DIS为高电平时,输出端为高阻状态。
(4)可与单片机进行双向通信,通过SPI单片机可向TLE6209写入可编程控制字,TLE6209可以向单片机发送故障诊断信息。
(5)工作时仅需两路信号:DIR控制输出电流方向;PWM控制输出电流大小。
TLE6209电路设计如图3所示。
1.4 CAN总线接口电路设计
控制器局域网(Controller Area Network,CAN)为串行通信协议,能有效支持具有很高安全级的分布实时控制。CAN的应用范围很广,从高速的网络到底价位的多路配线都可以使用CAN。在汽车电子行业里,使用CAN连接发动机控制单元、传感器、防滑系统等,其传输速度可达1 Mb/s。
ETC系统需要通过CAN总线来接收其他车载电控系统的开度需求信号。
MC68HC908AZ32A片内集成了CAN控制器,本文选择Philips公司的,TJA1040作为CAN收发器,具体的CAN总线接口电路如图4所示。
1.5 SCI通信电路设计
此外,ECU硬件还包括BDM接口电路以及故障诊断电路等,本文不再一一赘述。
2 ECU软件设计
ECU软件主要包括:系统初始化模块,模拟信号采集与处理模块,数据通信模块,节气门开度控制决策模块,PWM信号生成模块等。程序总体流程如图6所示。
系统初始化内容主要包括MCU内部的时钟、轮速输入通道端口设置、执行机构输出通道端口设置、看门狗定时器设置、通信端口初始化、系统变量等,以保证MCU正常运行。
信号采集与处理模块采集油门踏板位置信号和节气门位置信号两个模拟量和制动信号开关量。数据通信模块接收其他车载电控系统发出的开度需求信号,并用于开度控制决策。
控制决策模块根据当时的汽车行驶状况、其他车载电控系统的需求并考虑发动机特性之后,按照一定的控制算法决定目标节气门开度。PWM信号生成模块将节气门开度需求转化为相应的控制直流电机的PWM信号,通过驱动芯片驱动电机转动使节气门开度到达目标位置。
3 ETC系统功能测试
ETC系统由电子控制单元、节气门体、直流驱动电机、油门踏板模块(包括踏板位置传感器)、节气门位置传感器等组成。
节气门位置传感器用于实时采集节气门开度,对闭环控制进行位置反馈,是节气门状态惟一的检测元件。电子节气门要求具有高度的可靠性,位置传感器采用了冗余设计,系统采用2个节气门位置传感器。为了精确控制电子节气门的开度,必须研究其位置传感器输出电压特性,找到输出电压与节气门位置之间的对应关系。节气门的开度范围为0°~88°。由于有怠速开度,节气门静态位置以上的工作区域实际为9°~88v°。节气门位置传感器具有良好的线性关系。因此,根据节气门位置传感器提供的电压信号,可以准确地检测出节气门连续的旋转角度。通过标定试验,输出电压与节气门位置的对应关系如图7所示。
电机输出力矩与驱动信号占空比成正比。占空比增大时,电机驱动力矩大于复位弹簧阻力矩,节气门开度增加;当占空比减小时,电机驱动力矩小于复位弹簧阻力矩,节气门开度减小。本文采用单片机输出的频率为10 kHz、占空比可调的PWM信号,经过功率放大后对直流电机进行驱动。通过标定试验,节气门开度和PWM信号占空比关系如图8所示。由于回位弹簧滞后等非线性因素影响,节气门开度和PWM控制信号占空比成近似的线性关系。
4 ETC应用于ASR控制的硬件在环测试
在开发的ASR系统进行控制时,控制发动机转矩通过调节节气门开度实现。ASR控制器需要将其节气门开度需求发送给ETC控制器,通过ETC系统进行节气门开度调节。将开发的电子节气门系统用于ASR控制,搭建了以先进的实时仿真系统dSPACE为核心的硬件在环测试平台,总体结构如图9所示。
其中,液压控制单元为ASR控制器的执行机构;车辆系统包括运行于dSPACE系统的车辆模型和油门踏板及其位置传感器、制动踏板等实际部件。ETC控制器和ASR控制器的节气门开度通过通信接口(CAN或SCI)进行数据交换。
利用此试验台即可进行基于通过调节节气门开度来调节发动机输出转矩达到ASR控制目的的硬件在环测试。测试ASR控制的一种典型工况为低附着路面起步,控制结果如图10和图11所示。进行硬件在环测试时,假定初始节气门开度为100%,两个前轮为驱动轮。
ASR控制的目的是抑制驱动车轮过度滑转,使车轮滑动率保持和合理的范围内。从图11可以看出,ETC系统根据ASR控制需求,迅速将节气门开度由初始的100%降低,直到驱动车轮不再过度滑转,然后在适当调节节气门开度是车
- 基于物联网技术的智慧汽车检测线解决方案(04-07)
- ETCR漏电流记录仪的技术规格(02-22)
- 汽车电子测量系统解决方案综述(11-06)
- 实时测试技术的演变进程(06-29)
- 基于VC++的发动机ECU测试系统的研究与设计(01-29)
- 使用NI VeriStand实现汽车ECU的HIL测试(05-07)