微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 电弧炉谐波检测仪的设计研究

电弧炉谐波检测仪的设计研究

时间:04-11 来源:胡 潇 刘小河 点击:

定义新的蝶形因子WlN,得出的X(k)具有新的物理意义,即k/l次谐波分量的幅度。也就是说,通过设定不同的l值,改变FFT程序中的蝶形因子,可以分离出1/l次谐波分量。

1.2 谐波参数的计算

  在检测过程中,由于电弧炉系统谐波具有利用随时间随机变化的特点,所以相比于连续测量每个时刻的谐波分量,测量一段短时间内谐波信号的平均有效值,既能体现出谐波分量短时间内的具体情况,也能体现出谐波在一段时间内的变化趋势。因此需要在某个时间内利用采样取得的离散信号来计算有效值、功率以及功率因子等谐波参量。
设在1个采样周期内采样N次,采样得到的电压为Vi,电流为ii,其中i=1,2,…,N,则电压的有效值为:

其中:Unk为k次谐波的电压幅值;Ink为k次谐波的电流幅值;αk一βk为忌次谐波的电压和电流的相位差。各次谐波分量的计算应用FFT进行谐波分析,也就是对采样信号经过FFT变换得到的信号频谱用来计算各次谐波分量。时域中的采样序列x(n)经FFT变换后成为频域中的复序列:

  其中:Xr(k)为实部;Xi(k)为虚部。

  由于x(n)为实数列,因此对应的复数序列是共扼对称的。N点采样值经FFT变换后只能得到N/2个相互独立的结果。例如,当采样点数为128时,经FFT后,最高只能计算出64次谐波分量。根据上式就可求出k次谐波电压、电流的幅值。单相k次谐波电压含有率:

  单相谐波电流含量:

  电流谐波总的畸变率为:

  其中:I1为基波电流有效值;j为总电流有效值;r=I1/I为基波电流和总I电流的有效值之比,称为基波因数。通过以上公式的计算,得出相关电参数的值。

2 硬件电路设计


  整个检测仪表的硬件电路包括信号采集处理环节、单片机数据处理以及显示和通信等3部分组成,如图1所示。

2.1 信号采集处理环节

  信号采集处理环节包括电流信号的采集、放大和滤波3个部分,如图2所示,其所要完成的目标是把被测电流信号变换为满足单片机电路要求的电压信号。

  其中,电流采集部分使用HCT210A电流互感器,将被测电压信号转换为对应的电压信号。放大电路先对该信号进行分压,然后将3路信号通过由LM324芯片所组成的放大电路,此时的电压信号中高频分量容易超过A/D转换芯片的工作频率,造成频谱混叠和高频干扰,因此在此时必须加上一个滤波环节以消除高频影响。为了可以方便地改变截至频率,在该环节中选用开关电容滤波器MAX293来设计滤波电路,如图3所示。

2.2 单片机数据处理

  软件设计主要采用C语言编程。在程序编程中,由于MSP430无法直接进行复数运算,必须把复数分解成实部与虚部的和,然后分别进行计算,因此需要先将正弦表在程序中计算形成,以便程序在采样之后读取进行运算。另外在程序运行后,需通过外设输入相应谐波次数。系统总体软件结构流程图如图4所示。

4 结 语

  这里所提出的谐波检测系统,利用MSP430系列单片机组成的相关采集与运算电路。对电弧炉负载的电网电流谐波进行实时的检测并显示,有助于对电弧炉系统进行分析与控制和开展电力系统谐波抑制的研究。相比于DsP芯片,MsP430系列单片机更具有低功耗,低成本等优点,适用于便携设备的设计。

  单片机数据处理环节的硬件部分包括A/D转换和数据处理两个部分。对于这里所使用的MSP43014X系列的单片机,虽然其内部集成了12位A/D转换器,但是由于需要多个通道同时转换三相电压、电流信号,因此要另外选取单独的A/D转换芯片,在这里选择MAXl25芯片,该芯片是一个具有2×4通道同时采样、14位数据采集系统。在A/D转换过程中,首先采集A相电压、电流,B相电压、电流这4路信号;转换结束后,单片机读取4路采样值然后再选择C相电压、电流进行采样。其核心部分单片机采用德州仪器公司(TI)的MSP430系列超低功耗微控制器。该芯片具有1个16位CPU、16位的寄存器以及常数发生器,能够最大限度地提高代码效率。为了使整个检测装置能够快速实时达到检测性能,单片机外接2块通过译码器扩展的64 KB的数据存储器和1块32 KB的EPROM片外程序存储器。为了使该检测仪能够同时检测三相电路的谐波信号,在硬件部分A/D转换部分要设置1个三选一的开关,利用软件系统控制每次采集并转换的某一相位。外设与显示设备的设计这里不再详述。

3 系统软件总体介绍

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top