微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鎾儉婢舵劕绾ч幖瀛樻尭娴滅偓淇婇妶鍕妽闁告瑥绻橀弻锝夊箣閿濆棭妫勭紒鐐劤濞硷繝寮婚悢鍛婄秶闁告挆鍛缂傚倷鑳舵刊顓㈠垂閸洖钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷�04闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫆闁芥ê顦純鏇㈡⒒娴h櫣甯涢柛鏃€娲熼獮鏍敃閵堝洣绗夊銈嗙墱閸嬬偤鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷08闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫇闁逞屽墰缁絽螖娴h櫣顔曢梺鐟扮摠閻熴儵鎮橀埡鍐<闁绘瑢鍋撻柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏犖ч柛灞剧煯婢规洖鈹戦缁撶細闁告鍐f瀺鐎广儱娲犻崑鎾舵喆閸曨剛锛涢梺鍛婎殕婵炲﹪鎮伴鈧畷鍫曨敆婢跺娅屽┑鐘垫暩婵挳骞婃径鎰;闁规崘顕ч柨銈嗕繆閵堝嫯鍏岄柛娆忔濮婅櫣绱掑Ο鑽ゎ槬闂佺ǹ锕ゅ﹢閬嶅焵椤掍胶鍟查柟鍑ゆ嫹婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋娆忕仾闁稿鍊濋弻鏇熺箾瑜嶉崯顐︽倶婵犲洦鈷戦柟绋挎捣缁犳挻銇勯敂璇茬仯缂侇喖顭烽、娑㈡倷鐎电ǹ寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�
首页 > 测试测量 > 测试测量技术文库 > 基于ARM9的高速数据采集系统的实现

基于ARM9的高速数据采集系统的实现

时间:03-04 来源:程言奎,李英 点击:

摘要:随着雷达、通信、遥测、遥感等技术应用领域的不断扩展,人们对数据采集系统的采集精度、采集速度、存储量等
都提出了更高的要求。针对当前数据采集系统的缺点,提出了基于ARM9的数据采集系统的设计。详细论述了信号调理,时钟产生,数据存储与传输,抗干扰等关键技术及采取的相应措施。经实践证明,该设计方案具有采集精度高,数据采集速度快,数据存储量大的优点。

关键词:高速数据采集系统;ARM;模/数转换器;数据处理

l 引 言

  在科研、生产和人们的日常生活中,模拟量的测量和控制是很常见的。为了对温度、压力、流量、速度、位移等物理量进行测量和控制,通过传感器把上述物理量转换成能模拟物理量的电信号,即模拟电信号,将模拟电信号经过处理并转换成计算机能识别的数字量,送入计算机,这就是数据采集。

  数据采集的主要问题是采集速度和精度。采集速度主要与采样频率、A/D转换速度等因素有关,采集精度主要与A/D转换器的位数有关。高速数据采集系统的设计需要解决系统在速度、精度、数据存储等方面的矛盾。

2 数据采集系统的结构

  本文介绍的数据采集系统采用Samsung公司的S3C2410微处理器。数据采集系统按照功能可分为以下几个部分:模拟信号调理电路,模数转换器,数据采集和存储,时钟电路和系统时序及逻辑电路,如图1所示。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

                   图1 数据采集系统结构图

3 数据采集系统关键技术分析

3.1 系统时钟电路设计

  时钟信号的稳定性决定了采样系统的性能。相位噪声和相位抖动是反映时钟稳定性的的两个主要指标。其中相位噪声描述时钟信号的频谱纯度,相位抖动直接影响时钟的过零点。通常高速的AD采样系统采用三种时钟源:锁相环、晶振、模拟混频器。由于锁相环一旦失去基准频率,输出频率会立刻跳回振荡器本身的频率,此外当进行频率调整的时候,输出频率会产生抖动,频差越大,抖动会越大,不利与高速AD采样系统。模拟混频器速度慢,只适合在低频的条件下工作。因此,在高速电路的设计中,一般选择高频晶振作为时钟源。

  在高速AD采样系统中,取样时钟的稳定性与信噪比的性能密切相关。任何时钟信号噪声及时钟信号相位抖动都会影响采样系统的精度,时钟信号相位抖动对模数转换信噪比(SNR)的影响,可通过公式计算:

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

其中:fs为采样时钟频率,N为模数转换器位数,△clk为时钟信号相位抖动量。

3.2 模数转换器的选择

  ADC的选择除了要考虑数据输出电平,接口方式,控制时序,参考源,带宽等因素外,最重要的是根据设计需求计算动态指标:信噪比,采样率,满度范围等,从而可以得到ADC的位数、最高时钟频率、模拟输入范围等参数,既可选择所需要的ADC。本设计根据要求:采样频率20 MHz,实时采样20 Msps,转换位数12位,选择了美国AD公司的AD9224芯片。

3.3 模拟信号调理电路设计

  被采样的信号经过模拟信号调理电路的低噪声放大,滤波等预处理后,进入输入通道。由于高速数据采集系统的输入信号多为高频信号,需要进行阻抗匹配和前置放大。因此可以选择高速低噪声信号前置放大器和信号变压器。

  信号前置放大器的优势是放大系数可变,信号输入的动态范围大,还可以配置成有源滤波器,但是放大器的最高工作频率和工作带宽必须满足系统的需要,以避免信号失真。

  信号变压器的性能指标要优于信号放大器,而且信号失真小。但是信号变压器的信号放大系数固定,输入信号的幅度受到限制。

3.4 硬双缓冲实现连续采集存储

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

图中序号1~6代表工作流程,采集数据经CPLD控制首先由FIFO写入存储器1,当存储器1数据写满后,产生硬件中断信号,该信号有两个作用:通知微处理器系统数据已经准备好,由微处理器从存储器1取回数据放入缓冲区;通知CPLD控制逻辑关闭FIFO与存储器1之间的数据通道,同时开启FIFO与存储器2之间的数据通道,后续数据得以连续无间断的存入存储器1。此时,存储器1的数据正被微控制器读出,当存储器2数据就绪后,同样产生硬件中断信号。如此交替循环就可以实现采集数据长时间连续无断点存储。

3.5 多路同步采集存储时序分析

  要完成多路信号的同时存储且数据连续无间断点、无差错,对时序逻辑的设计提出了较高的要求,本文采用的CPLD器件,利用其在结构、密度、功能、速度和性能上的特点,并配合在线可编程(ISP)技术,实现了精确的时序控制,大大减少线路的噪声和功耗。

对多路信号同时锁存,若不允许丢失数据,必须在单个采集时钟周期内把多通道锁存的数据存入同一存储器中。假设同步采样频率为fs,通道数量为m,每个通道的存储时间为tn(n=1,2,3,…,

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top