微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 用示波器测试开关电源

用示波器测试开关电源

时间:10-22 来源:电子产品世界 点击:

图3. 开关设备的典型信号


  为了准确地进行开关器件电源测量,必须先测量断开和开通电压。然而,典型的8 位数字示波器的动态范围不足以在同一个采集周期中既准确采集开通期间的毫伏级信号,又准确采集断开期间出现的高电压。要捕获该信号,示波器的垂直范围应设为每分度100伏。在此设置下,示波器可以接受高达1000 V 的电压,这样就可以采集700 V 的信号而不会使示波器过载。使用该设置的问题在于最大灵敏度 (能解析的最小信号幅度) 变成了1000/256,即约为4 V。

  泰克DPOPWR 软件解决了这个问题,用户可以把设备技术数据中的RDSON或VCEsat值输入图4所示的测量菜单中。如果被测电压位于示波器的灵敏度范围内,DPOPWR 也可以使用采集的数据进行计算,而不是使用手动输入的值。

  图4. DPOPWR 输入页面允许用户输入RDSON 和VCEsat 的技术数据值。

图4. 传输延迟应对电源测量的影响

  
  消除电压探头和电流探头之间的时间偏差

  要使用数字示波器进行电源测量, 就必须测量MOSFET 开关器件 (如图2 所示) 漏极、源极间的电压和电流,或IGBT 集电极、发射极间的电压。该任务需要两个不同的探头:一支高压差分探头和一支电流探头。后者通常是非插入式霍尔效应型探头。这两种探头各有其独特的传输延迟。这两个延迟的差 (称为时间偏差),会造成幅度测量以及与时间有关的测量不准确。一定要了解探头传输延迟对最大峰值功率和面积测量的影响。毕竟,功率是电压和电流的积。如果两个相乘的变量没有很好地校正,结果就会是错误的。探头没有正确进行"时间偏差校正"时,开关损耗之类测量的准确性就会影响。

  图5 所示的测试设置比较了探头端部的信号 (下部迹线显示) 和传输延迟后示波器前端面板处的信号 (上部显示)。

  图6 - 图9 是表明了探头时滞影响的实际示波器屏幕图。它使用泰克P5205 1.3 kV 差分探头和TCP0030AC/DC 电流探头连接到DUT 上。电压和电流信号通过校准夹具提供。图6说明了电压探头和电流探头之间的时滞,图7显示了在没有校正两个探头时滞时获得的测量结果(6.059mW)。图8显示了校正探头时滞的影响。两条参考曲线重叠在一起,表明已经补偿了延迟。图9 中的测量结果表明了正确校正时滞的重要性。这一实例表明,时滞引入了6% 的测量误差。准确地校正时滞降低了峰到峰功率损耗测量误差。

图5. 传输延迟效应对电源测量的影响。

图7. 有时间偏差时峰值幅度和面积测量显示为6.059 瓦。

  DPOPWR电源测量软件可以自动校正所选探头组合的时间偏差。该软件控制示波器,并通过实时电流和电压信号调整电压通道和电流通道之间的延迟,以去除电压探头和电流探头之间传输延迟的差别。

  还可以使用一种静态校正时间偏差的功能,但前提是特定的电压探头和电流探头有恒定、可重复的传输延迟。静态校正时间偏差的功能根据一张内置的传输时间表,自动为选定探头 (如本文档中讨论的Tektronix 探头) 调整选定电压和电流通道之间的延迟。该技术提供了一种快速而方便的方法,可以将时间偏差降至最小。

  消除探头零偏和噪声

  差分探头和电流探头可能会有很小的偏置。应在测量前消除这一偏置,因为它会影响测量精度。某些探头采用内置的自动方法消除偏置,其它探头则要求手动消除偏置。

图8. 校正时间偏差后的电压和电流信号。

图9. 校正时间偏差后的峰值幅度和面积测量。将此结果与图7 中的结果进行比较。

  自动消除偏置

  配有TekVPITM 探头接口的探头与示波器相结合,可以消除信号路径中发生的任何DC偏置误差。在TekVPITM探头上按Menu按钮,示波器上出现Probe Controls框,显示AutoZero 功能。选择AutoZero 选项,会自动清除测量系统中存在的任何DC偏置误差。TekVPITM电流探头还在探头机身上有一个Degauss/AutoZero按钮。压下AutoZero按钮,会消除测量系统中存在的任何DC偏置误差。

  手动消除偏置

  大多数差分电压探头都有内置的直流零偏修整控制,这使消除零偏成为一件相对简单的步骤:准备工作完成之后,接下来:
将示波器设置为测量电压波形的平均值;

  选择将在实际测量中使用的灵敏度 (垂直) 设置;

  不加信号,将修整器调为零,并使平均电平为0 V (或尽量接近0 V)。

  相似地,在测量前必须调节电流探头。在消除零偏之后:

  将示波器灵敏度设置为实际测量中将要使用的值;

  关闭没有信号的电流探头;

  将直流平衡调为零;

  把中间值调节到0 A 或尽可能接近0 A;

  注意,这些探头都是有源设备,即使在静态,也总会有一些低电平噪声。这种噪声可能影响那些同时依赖电压和电流波形数据的测量。DPOPWR 软件包包含一项信号调节功能 (图10),可以将固有探头噪声的影响降至最低。

记录长度在电源测量中的作用

  示波器在一段时间内捕获事件的能力取决于所用的采样速率,以及存储采集到的信号样本的存储器的深度 (记录长度)。存储器填充的速度和采样速率成正比。如果为了提供详细的高分辨率信号而将采样速率设得很高,存储器很快就会充满。

  对很多SMPS 电源测量来说,必须捕获工频信号的四分之一周期或半个周期(90 或180 度),有些甚至需要整个周期。这是为了积累足够的信号数据,以在计算中抵消工频电压波动的影响。

识别真正的Ton 与Toff 转换

  为了精确地确定开关转换中的损耗,首先必须滤除开关信号中的振荡。开关电压信号中的振荡很容易被误认为开通或关断转换。这种大幅度振荡是SMPS 在非持续电流模式(DCM) 和持续电流模式(CCM) 之间切换时电路中的寄生元件造成的。

  图11 以简化形式表示出了一个开关信号。这种振荡使示波器很难识别真正的开通或关断转换。一种解决方法是预先定义一个信号源进行边沿识别、一个参考电平和一个迟滞电平,如图12 所示。根据信号复杂度和测量要求的不同,也可以将测得信号本身作为边沿电平的信号源。或者,也可以指定某些其它的整洁的信号。

  在某些开关电源设计 (如有源功率因数校正变流器) 中,振荡可能要严重得多。DCM 模式大大增强了振荡,因为开关电容开始和滤波电感产生共振。仅仅设置参考电平和磁滞电平可能不足以识别真正的转换。

  这种情况下,开关器件的栅极驱动信号 (即图1 和图2中的时钟信号) 可以确定真正的开通和关断转换,如图13 所示。这样就只需要适当设置栅极驱动信号的参考电平和磁滞电平。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top