一种多周期测量频率的方法及应用
间128C;
S4:后续处理,包括频率计算、温度采集及其他运算。该过程时间小于128C。
整个计数及处理过程时间小于640 C,在128 ms以内,远小于10 s。原始信号的周期C及测量误差如下计算。原始信号的周期为C,计数值为N,计算公式为:
其中,M=128;τ=(1/5.529 6)μs;128C=(N/5.5296)μs,C=N×0.001 4μs。
其测量误差为:
误差中前项是量化误差,为0.001 4μs;后部分是因为标准信号误差(即晶振的误差)引起的。在整个测量范围内,C最大值为211.787 9μs,选取准确度优于5 ppm的晶振,该项误差最大值为:211.787 9μs×5 ppm=0.001 1μs;两者的和小于0.002 636 2μs,满足要求。
上述的分析计算是两者绝对值相加,有一定的冗余。如果进一步提高M值,将进一步减小量化误差。
用该方法测量周期的前提条件是选取准确度优于5 ppm的晶振,测量周期的误差最小可控制在0.001 1μs。
将温度信号直接连接到P89LPC935的模拟输入端AD10(P0.1)引脚,进行A/D转换。A/D转换时间为μs量级,远远小于要求的采样周期10 s,在温度采集时,有足够的时间对A/D转换数据进行数据处理,其具体方法为:每次采集进行18次A/D转换,去掉一个最大值和最小值,取其余16个数据算术平均值作为最终结果。
温度信号采集的准确度为20 mV,优于43 mV的要求。
6 结 语
该测量方法成功地应用于与河南省气象局合作开发的自动气象站中。用多周期测周的方法快速准确测量信号的频率(周期)基于2个条件:信号是连续的;P89LPC935的晶振必须使用外接的高精度、高稳定晶体振荡器(准确度优于5 ppm)。