隔离驱动IGBT和Power MOSFET等功率器件设计所需要的一些技巧
功率器件,如IGBT,Power MOSFET和Bipolar Power Transistor等等,都需要有充分的保护,以避免如欠压,缺失饱和,米勒效应,过载,短路等条件所造成的损害。本在线研讨会介绍了为何光耦栅极驱动器能被广泛的接受和使用,这不仅是因其所具有的高输出电流驱动能力,及开关速度快等长处之外,更重要的,它也具有保护功率器件的所需功能。这些功率器件的保护功能包括欠压锁定(UVLO),DESAT检测,和有源米勒钳位。在电力转换器,电机驱动,太阳能和风力发电等系统的应用上,所有这些保护功能都是重要的,因它确保这些系统能安全和稳定的操作。另外,能把握如何正确的选用,设计这些光耦栅极驱动器来有效的使用/控制这些功能使到整个系统更简单,高效,可靠,是系统设计工程师不可或缺的技能!
下面是本次在线研讨会上的工程师朋友与专家的精彩互动摘选(二)。了解更多Avago IGBT门驱动产品,请点击链接。
1、请问:故障保护功能有哪些?都是集成在隔离驱动器里吗?谢谢!
3种故障保护功能都集成到Avago的高集成栅极驱动器ACPL-33xJ里 - UVLO(以避免VCC2电平不足够时开启IGBT),DESAT(以保护IGBT过电流或短路),和米勒钳位(以防止寄生米勒电容造成的IGBT误触发)
2、请问:如何避免米勒效应?谢谢!
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到 15 V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断 期间 , 高dV / dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/ dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。第一个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
我们的解决方案是通过缩短门极 - 发射极的路径, 通过使用一个额外的晶体管在于门极 - 发射极之间。达到一定的阈值后,晶体管将短路门极 - 发射极地区。这种技术被称为有源米勒钳位, 提供在我门的ACPL-3xxJ产品。你可以参考Avago应用笔记 AN5314
3、请问:对于工作于600V直流母线的30~75A、1200V IGBT而言,ACPL-33x、ACPL-H342 这5颗带miller钳位保护的栅极驱动光耦能否仅以单电源供电就能实现高可靠性驱动,相比于传统的正负供电,可靠性是更高,还是有所不足?谢谢!
Avago ACPL-332J, ACPL-333J 以及 ACPL-H342 的门极驱动光耦可以输出电流 2.5A。这些产品适合驱动1200V,100A类型的IGBT。
1)当使用负电源,就不需要使用米勒箝位,但需花额外费用在负电源上。
2)如果只有单电源可使用,那么设计者可以使用内部内置的有源米勒箝位。
这两种解决方法一样可靠。米勒箝引脚在不使用时,需要连接到VEE。
4、请问:在哪些应用场合需要考虑米勒效应的影响?谢谢!
IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到 15 V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断 期间 , 高dV / dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。
当上半桥的IGBT打开操作,dVCE/ dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。
有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。第一个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。
我们的解决方案是通过缩短门极 - 发射极的路径, 通过使用一个额外的晶体管在于门极 - 发射极之间。达到一定的阈值后,晶体管将短路门极 - 发射极地区。这种技术被称为有源米勒钳位, 提供在我门的ACPL-3xxJ产品。你可以参考Avago应用笔记 AN5314
5、请问:我们光伏逆变器是安装在电厂,环境温度相当恶劣,请问贵公司光耦的工作环境温度范围?谢谢!
我们产品的工作环境温度范围可达-40°C至105°C。在工业应用情况下是足够的。如果客户需要更高的工作温度,我们的R2Coupler光耦可以运作在扩展温度达到125°C。
6、请问:贵公司光耦绝缘耐压多高?谢谢!
我们的门极驱动光耦有不同的封装。每个封装都有其自身的特点 - 如不同的爬电距离和间隙,以配合不同的应用。不同
隔离驱动IGBT Power MOSFET ACPL-33xJ 相关文章:
- 如何设计更小更高效的AC/DC电源(02-14)
- 前高清时代的挑战与应用(09-21)
- 功率因数校正器(PFC)在电源应用中的重要作用(11-04)
- 低VCEsat双极结晶体管和MOSFET的比较(02-12)
- 便携产品电源芯片的应用技术(02-15)
- TI针对工业应用的电池管理解决方案(06-30)