微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > 满足智能手机应用要求的音频放大器

满足智能手机应用要求的音频放大器

时间:05-18 来源:3721RD 点击:

近年来,智能手机集成的功能越来越多,但在基本的音频放大应用方面,在继续优化性能表现及用户音频体验方面仍有继续提升的空间。原因是智能手机存在着特殊的音频要求,例如:智能手机存在基带/应用处理器、调频(FM)广播、蓝牙(耳机)等多种音频输入源;编解码器(CODEC)可以集成在模拟基带中,也可独立存在;多数情况下最少是扬声器放大器保持单独存在(不集成),从而提供足够输出功率;耳机放大器外置,配合高保真(Hi-Fi)音乐播放。

本文将重点探讨智能手机的扬声器放大器及耳机放大器性能要求,介绍安森美半导体相应的音频放大解决方案,以及集成了立体声耳机放大器、D类扬声器放大器及I2C控制的新的音频子系统方案--音频管理集成电路(AMIC)。

图1:智能手机的音频放大应用示意图。

扬声器放大器性能要求及解决方案

对于智能手机而言,期望的扬声器放大器应当提供低电磁干扰(EMI),避免与智能手机中的其它射频(RF)电路产生干扰。就用户的实际应用而言,用户有时候会想要在公共场合进行免提语音通话,有时候会想要带音频播放的视频观看。这就要求扬声器放大器提供具有高识别度的输出音量,同时提供低失真。此外,低噪声也是所期望的扬声器放大器提供的重要特性。具体而言,这就要求扬声器放大器具有高电源抑制比(PSRR),从而抑制GSM信号传输期间电池电压波动产生的时分多址(TDMA)噪声;亦要求导通及关闭期间无爆破音(pop)和嘀嗒音(click)噪声。

图2:降低EMI的不同技术

要满足智能手机扬声器放大器的这些期望性能要求,D类放大器是极佳选择。如D类放大器提供极低EMI,避免与其它RF电路产生干扰。实际上,D类放大器将输入的模拟音频信号转换为脉宽调制(PWM)的脉冲信号,再以此脉冲信号控制开关器件来导通/关闭音频功率放大器。对于智能手机应用而言,要降低音频输出段的EMI,重要的是减少较高频率的频谱部分。传统PWM技术没有特定手段来应对。但要做到这一点,可以采用两种技术,一是PWM扩频调制(开关频率变化),一是带斜坡控制的PWM(延缓上升/下降时间)。相比较而言,斜坡控制技术比扩频调制技术在减少较高频率的频谱方面更为有效,更有利于降低EMI。

安森美半导体的NCP2824是一款2.8 W单声道D类放大器,采用斜坡控制技术来提供低EMI。此外,NCP2824藉单线(Single-Wire)接口提供可实时配置的自动增益控制(AGC)功能。其自动增益控制功能包含两种模式,分别是不削波(non-clipping)和功率限制器模式。对于扬声器放大器而言,在智能手机的电池电压很低条件下会出现削波,导致输出摆幅减小及饱和。NCP2824的自动增益控制"不削波"功能可以维持低失真,可以选择最大总谐波失真(THD)阈值。另一方面,在高输出功率条件下会出现过高输出功率,致使输出摆幅减小及饱和。功率限制器功能限制放大器的输出功率(可选择最大输出电压阈值),保护扬声器免受过高音量导致的损伤。

图3:NCP2824支持不削波和功率限制器模式的自动增益控制

除了具有低EMI和低失真,NCP2824在音频放大器的其它关键性能指标上也表现极佳。例如,这器件具有达95 dB的优异信噪比(SNR)性能,提供极佳的音频表现。此外,NCP2824也具有极佳的电源抑制比(PSSR),217 Hz频率时PSSR为-72 dB。NCP2824还提供高达92%的能效,有助于延长便携设备电池使用时间。这器件采用2.5 V至5.5 V电压工作,支持全差分输入(从而消除输入耦合电容),仅须使用1颗外部电容。这器件还提供短路保护电路,用于智能手机及移动互联网设备(MID)、导航设备、便携游戏机及便携式媒体播放器等应用。

耳机放大器性能要求及解决方案

智能手机用户期望通过耳机欣赏具有高保真(Hi-Fi)品质的音乐播放,这就要求耳机放大器具有低失真。由于耳机接近人耳,直接影响用户的听觉体验,故耳机放大器须无可听噪声,此特性对于耳机放大器的重要性比对于扬声器放大器的重要性更高。此外,耳机放大器也要求具有高能效,帮助延长音乐播放时间。

为了满足消费者对耳机音频质量更高的要求,智能手机等便携消费类设备需要高质量的立体声耳机放大器。而设计人员在设计立体声耳机放大器输出段时,需要从电容耦合及真实接地(true ground)等不同选择中选出更适合的方案。电容耦合方案的能效高,因为电源仅为正输出信号供电;但这种方案要使用大耦合电容(会滋生尺寸及成本问题),而且低频时声音品质较差。相比较而言,真实接地方案无须使用耦合电容,具有良好的低频响应性能,且耳机真接地配合使用常规转换器,但真实接地结构的能

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top