如何设计用于标清视频信道的有源滤波器
为何采用视频滤波器?
视频频段中的任何干扰信号都将产生一些肉眼可见的显示失真问题,而采用视频滤波器就可以消除这些失真。信号混叠是采样视频系统中的一个明显失真。当超出视频频段范围的高频信号(例如外部无线发射信号或本地时钟信号)通过模数转换器的采样过程混叠回视频频段时,就会产生混叠现象。在模数转换器之前放置一个抗混叠滤波器就可防止这种失真。当利用数模转换器重建数字化的视频信号时,将导致视频信号在较高频率上被复制,从而也会引起图像失真。这类失真信号可通过在数模转换器之后加入一个视频滤波器来消除。
为何采用有源视频滤波器?
采用运算放大器实现的有源滤波器将比采用电感实现的无源滤波器频率响应更好、带宽更平坦,且通道间更匹配。无源滤波器的带宽和频率响应特征取决于组成它的电感和电容值的精度。而有源滤波器采用运算放大器和电阻器来替代电感器,由于有源滤波器的精度取决于电阻和电容值的精度,而不再取决于电感和电容值的精度,因此精度得到充分提高。另外值得一提的是,便宜的电阻比便宜的电感精度高得多。此外,现在运算放大器的价格也很低,因此一个有源滤波器往往比采用电感实现的无源滤波器更便宜。
设计有源视频滤波器
视频滤波器要求良好的相位线性特征,即在整个视频频段内都应具有十分恒定的相位延迟,同时幅度响应的平坦度要好。这两方面的参数要求使得Butterworth滤波器成为一个不错的选择。采用一个4阶滤波器就能在高频下获得很好的阻带抑制效果。
4阶Butterworth滤波器由两个运算放大器采用Sallen-Key方式构成。本文中的设计采用飞兆半导体的高速双运算放大器(FHP3230),来构造一个可放入狭小印刷电路板中的滤波器。FHP3230的增益带宽为60MHz,是一种采用单电源供电和轨至轨输出方式的放大器。这些特点使FHP3230成为该类应用的最佳选择。
图1所示为一个4阶滤波器。
图1:采用FHP3230双运算放大器的有源视频滤波器(+5V单电源、AC耦合输入)
设计Butterworth有源视频滤波器
该滤波器有两级,每一级都由一个FHP3230运算放大器来实现(因此整个滤波器需要一个双运算放大器器件)。每级各提供两个极点,以构成完整的4阶滤波器。有很多种方法来选择这种滤波器的元件值。在本文的例子中,第一级为单位增益,Q值为0.54;第二级的增益为+2,Q值为1.3。这些Q值可形成一个Butterworth滤波器。为确保滤波器在整个视频频段内的平坦性,取截止频率fo为6MHz。这将导致整个Butterworth波形在5MHz频率时的增益为-1dB。
电容应足够大,这样PCB的寄生电容才不至于影响电容值。但电容也不能太大,否则电阻值将会很小,以致放大器将难以驱动如此小的电阻。PCB的寄生电容在短走线的情况下约为1pF(制造PCB的材料直接影响寄生电容大小)。如果以18pF作为电容元件的基本量级,我们就能将寄生电容的影响降到最低。
以下是一级Sallen-Key滤波器的转换函数:
图1中每一滤波级的转换函数都可由上式表示,只需用额外的下标(a或b)来区分不同的滤波级(例如将方程中R1替换成R1a或R1b等)。
以下为转换函数中的一些关键参数:
或K=1(对于第一级的情况)。
这些等式并不是最有效的形式。例如,已知fo和Q值,希望找出最佳的电阻值和电容值。目前有许多种电阻和电容值的不同组合方案可以定义滤波整形,为了简化选择,可以将电阻和电容表示成某个公共值的比例因子,即:
R1=R×a、R2=R、C1=C和C2=C×b。其中C=18pF。
进行替换后,可以得到:
设计滤波器第一级
如果第一级中采用的电容值相同,而该级是单位增益级,因此最高Q值只能达到0.5。又因为要求的Q值为0.54,所以第一级的电容绝对不能等值。这就需要选用一个大于18pF的标准电容,而22pF的电容就刚好符合要求。当然还有许多其它的电容值也十分合适。这样,第一级的比例因子b为22/18(即1.22),而第一级的比例因子K为1,从而可得:
由于已知Q=0.54,则可从
- 便携产品电源芯片的应用技术(02-15)
- 头戴耳机的可调串音电路(03-24)
- 基于I2C总线控制的音频处理电路设计(10-17)
- 新型低电容EMI滤波器为手机带来更强抗干扰性能(01-22)
- 面向LCD的电磁干扰滤波器设计 (02-17)
- 视频滤波器选择策略(05-13)