如何设计用于标清视频信道的有源滤波器
上式求解出a,得a=1.53。
基于比例因子a,可从截止频率fo的等式中求解出R值:
将fo=6MHz代入上式,得到:R=1,079Ω、R1=1,650Ω、R2=1,079Ω。
最接近(1%)标准电阻的值为:R1=1.65kΩ、R2=1.07kΩ。
设计滤波器第二级
第二级放大器的增益为+2,因此可使用等值的电容(尽管其Q值更高)。假设C1=C2=C=18pF,同样将电阻值表示为一个比例因子a,即:
R1=R×a和R2=R。
可以得到:
由于已知第二级的Q=1.3,可从上式求解出a,得a=1.69。将fo=6MHz代入截止频率fo的等式,解出R值:R=1,134Ω,R1=1,916Ω,R2=1,134Ω。最接近(1%)标准电阻的值为:R1=1.91kΩ,R2=1.1kΩ。
调整有源滤波器以适应放大器增益带宽
从以上等式导出的元件值有一个问题,即它们都假设运算放大器的带宽是无限的(如果存在这样的运算放大器,肯定会非常昂贵)。利用前面导出的元件值来构建滤波器电路,会发现该电路在0.6dB增益时出现峰值,而在增益为-3dB时带宽大约减少18%。因此,必须调整这些元件值,以补偿放大器中的相移延迟。所幸这一调整过程非常简单。
首先,测出构建的电路在-3dB下的带宽。然后,根据实际测量带宽与期望带宽之比,调整全部四个滤波器电阻(R1a、R2a、R1b、R2b),即:
这里
按这种方式调整电阻将改变滤波器频率,但对Q值不会有太大影响。表1为测量电路后计算出的电阻值。
表1:测量电路后计算出的电阻值
将电路中的电阻变为根据电路计算出来的调整值(针对具体的电路,这些值可能会有差异)。改变电阻值后,再测量带宽。现在的带宽将会更接近要求,但可能也不完全正确,不过对此无需担心。滤波器的峰值可能会比之前略大一些,但这并不会造成问题。
其次,调整峰值(即Q值)。滤波器中几乎所有的峰值都是由第二级所产生,因为该级的Q值和增益都更高(回路传输更小,带宽更窄),因此,我们将Q值的调整集中在该级上。可通过减小R1b电阻来调整峰值。先减小约20%,如果仍然出现峰值,则进一步减小阻值。如果阻值减小引起的频率响应太大,则应适当增加阻值。一个可使滤波器频率响应波形最接近Butterworth滤波器的好办法是,观察-1dB处的频率并调整R1b,直到-1dB处的频率为5MHz(当达到该值时,频率响应波形应当干净、平坦)。通过将R1b值从1.58kΩ减小到1.24kΩ,使得滤波电路中的频率响应波形与一个理想的Butterworth滤波器非常匹配。表2为电路中采用的最终电阻值。
表2:电路中采用的最终电阻值
调整峰值后(电阻值应基于测量结果,不必非得与表2中的阻值相同),-3dB处的频率将接近期望值6MHz。图2所示为电路中测量出的频率响应曲线,图中同时给出了初始频率响应、调整频率后的结果、调整峰值后的结果(最终电路)以及理想Butterworth滤波器的频率响应。
图2:电路中测量出的频率响应曲线,包括初始频率响应、调整频率后的结果、调整峰值后的结果以及理想Butterworth滤波器的频率响应。
滤波器性能
该滤波器的频率响应测量结果如图2所示(即调整峰值后的结果,用红色曲线表示),图2中也同时给出了一个理想的6MHz Butterworth滤波器的频率响应曲线(绿色曲线)。该频率响应结果是在用本文方法构建的电路上测出的。如图所示,该滤波器在视频频段内几乎不出现峰值、平坦度好,并且阻带抑制效果好。微分增益和相位同样也很不错。表3概括了该滤波电路的性能细节。
表3:一个理想的6MHz Butterworth滤波电路的性能细节
源阻抗和负载阻抗
这款滤波器在源阻抗为100Ω时工作良好。如果源阻抗更高,那么必须在计算第一个电阻(R1a)的阻值时将其作为考虑因数。例如,若源阻抗为150Ω,就要根据这个阻抗减小R1a的阻值。
图1中滤波器的增益为+2V/V,用于驱动以串联输出电阻(图中为75Ω)端接的线路,从而提供后端终接。后端终接将信号一分为二,这样从输入到线缆远端视频负载的总增益就变成+1V/V。
电路布局
元件之间应尽可能靠近并采用短走线。保持运算放大器的输入短走线比输出短走线更加重要。注意:要去掉运算放大器输入端附近的接地铜层,以减小电路板寄生电容。倒相输入附近的寄生电容会导致运算放大器出现峰值,而若寄生电容靠近非倒相输入,则会给滤波器增加额外的电容,从而改变滤波器的频率响应波形和带宽。
本文小结
采用现代高速运算放大器来实现用于标准清晰度视频系统的有源滤波器时,其设
- 便携产品电源芯片的应用技术(02-15)
- 头戴耳机的可调串音电路(03-24)
- 基于I2C总线控制的音频处理电路设计(10-17)
- 新型低电容EMI滤波器为手机带来更强抗干扰性能(01-22)
- 面向LCD的电磁干扰滤波器设计 (02-17)
- 视频滤波器选择策略(05-13)