精密计时——自动化与大众化
图2. 典型晶体曲线向上平移,使精度接近0.0ppm 带有校准寄存器的RTC配合温度传感器,能够在指定温度达到-2.034ppm到+4.068ppm的计时精度。在高温和低温端点,调整范围为-126ppm 至 +63ppm,无法将曲线校准到接近0.0ppm。需要处理器周期性地测量温度,对校准寄存器以及其它RTC寄存器进行调节。 图3. 利用TCXO使晶体特性曲线平坦 图4. DS3231S在最差情况下的精度
这种方法的主要难点在于需要工厂校准。因为每个晶体的特征不同,因此需要对每个RTC提供一个指定温度范围内的校准表,从而花费较大的人力和较长时间。通常采用非易失寄存器保存校准数据,也大大增加了器件成本。另外,校准过程并未补偿晶体的老化,可能存在±3ppm的变化。 尽管校准寄存器不能自动地随着温度的变化进行调整,但它仍然提高了计时精度。
温补晶振
另一种有效提高计时精度的方法是使用具有温度补偿的32.768kHz晶体振荡器 (TCXO),如DS32kHz,作为独立的RTC时钟源。这种器件经过工厂校准,在扩展工业级温度范围内 (-40°C至+85°C)能够提供±7.5ppm的精度。TCXO的作用是将晶体抛物线变得平坦(图3)。
TCXO的内置温度传感器可以定时检测器件温度,用得到的温度值在查找表内查询,查找到的参数用来计算并产生内部32.768kHz晶体的负载电容,以达到0.0ppm的精度。查找表置于芯片内,不需要额外的输入。
晶体在生产过程中优化于特定的负载电容,数据资料中提供了相应的规格。如果实际负载电容不符合规格要求,将相对于标称频率产生偏差。这也正是TCXO提高精度的途径。如果知道特定晶体在每个温度点的频偏,TCXO可以通过调整负载电容来调整频偏。
使用现成的TCXO不需要研究算法,也不需要工厂校准。缺点是增加了成本,这种多芯方案也增大了PCB面积。
最精确的方案-集成RTC/TCXO/晶体
理想的精确计时器件是集成了RTC、TCXO和石英晶体的单芯片方案。DS3231S、 DS3232和即将公布的DS3234既是这样的器件。这些器件具有无与伦比的精度:0°C 到 +40°C范围内精度为±2.0ppm,相当于每年±1.0分钟;-40°C到0°C和+40°C到+85°C范围内为±3.5ppm,相当于每年±1.8分钟。最差情况下所能提供的精度如图4所示。如上所述,集成TCXO使晶体原有的抛物线特性曲线变成较为平坦的曲线。
与独立TCXO不同的是,其内部寄存器可以通过串行接口访问。芯片内部的器件老化寄存器可以提供进一步的负载电容和温度补偿,补偿晶体老化造成的精度损失。
结论
在集成TCXO、RTC和32.768kHz晶体出现之前,可供选择的方案很难达到精度要求。而且,这些方案都需要投入一定的开发精力,需要用户校准和附加的开发成本。单芯片集成TCXO/RTC/晶体的问世,使精确计时不再是一种奢求,而是一种切实可行的方案!
- 手机、相机、液晶显示屏抗电磁干扰特性的实现(11-26)
- 针对有线电视和通讯应用的PIN二极管衰减器的结构(11-22)
- 详细分析背光各材料的功用 (11-29)
- 利用约束管理来简化印刷电路板设计(02-14)
- 基于NXP UOCIII芯片的LCD TV方案 (04-17)
- D类功放与FM接收机的整合应用(06-04)