微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 基于SP37的汽车胎压监测设计与测试

基于SP37的汽车胎压监测设计与测试

时间:10-01 来源:3721RD 点击:

由于S P37低频接收波特率硬件设定为3.9k b p s的曼切斯特编码。图4为低频载波数据传输和曼切斯特编码之间关系。
\
由于硬件已被固化为3.9k b p s曼切斯特码波特率,通过计算L F每个发送位时间为3.9kbps×2=7.8kbps。

低频接收信息帧格式如图5所示。
\
射频数据传输需按照此格式进行信息交互。首先发送引导位32位,接着是18位的同步码,之后是按照曼切斯特编码方式发送唤醒ID、用户DATA数据。

3 电池选择

电池选择日本M a x e l l电池公司推出的高温系列电池(C R2450H R),供电电压+3.6V,电池容量480m A h,具有特点:寿命特长、能量密度大、自放电极低、重量轻(8.8g)、温限宽(-55~+125℃)。

天线设计

天线的性能将直接影响数据传输的质量,它是汽车轮胎监测传感器发射功率提升的重要因素。汽车轮胎监测传感器的天线靠近气门嘴,因而在设计天线时必须考虑轮胎金属丝的屏蔽,轮辋金属的反射影响,以及车轮高速旋转时天线不断变换方向、角度的影响等,所以天线设计时必须考虑以下因素:线极化容易受到天线姿态的影响,旋转的车轮对天线的工作极化要求相对较高;天线与射频模块连接,需要解决好阻抗匹配的问题,这也是天线设计的重点;由于轮胎压力传感器安装在轮胎内,受到车身、天线运动等对性能的影响;小型化设计,安装在轮胎内部的天线,必须考虑小型化设计,433.92M H z的工作频率,波长为691.37m m,常规的天线尺寸一定不能满足要求。

基于以上考虑,我们考虑选用气门嘴作为发射模块的天线,这种天线具有加工容易、成本低、易于一体化设计、易于匹配等优点。气门嘴安装方式如图6所示。
\
气门嘴天线是国内外目前汽车轮胎监测传感器常用的天线形式,它属于电小天线的范畴。电小天线的设计重点在于结构尺寸的设计和匹配电路的设置,因为电小天线的辐射电阻一般比较小(几欧姆),导致电小天线的辐射效率一般比较低,而且辐射阻抗中的往往存在虚部,这种储能因素将导致辐射效率进一步降低。虚部可以通过匹配电路予以解决,但实部电阻需要与发射芯片的射频输出管脚的阻抗进行匹配,这也是发射电小天线的设计重点。本方案采用的天线加载方式,通过内部匹配黄铜片进行加载,其类似于倒F天线加载方式,经过台架试验和路试试验后表明我们的设计思路和匹配方法是有效的。
\

软件设计

系统具有的软件功能:周期性测量轮胎压力、温度值;可变周期性发射轮胎压力、温度值;低频射频数据接收处理;气压高报警功能;气压低报警功能;温度高报警功能;快漏气报警功能;电池电压低报警功能;传感器无信号报警功能。系统要求具备10年长的寿命,要达到如此长的使用年限,一般状态下系统都处于休眠状态,静态电流只有0.6μ A。系统休眠状态可通过低频L F中断或间隔定时器中断来唤醒。系统软件框架流程图如图8所示。

S P37内部R O M自带底层库函数(Library Function),用户可以直接调用库函数。库函数的使用大大简化了程序员软件开发难度而且软件可靠性也得到增强。库函数包含传感器测量函数、低频接口控制函数、高频接口控制函数和其他处理函数。其中,传感器测量函数包含:测量压力或运动加速度M e a s_P r e s s u r e函数、测量温度M e a s_T e m p e r a t u re函数、测量电池电压Meas_Supply_Voltage函数、测量加速度Meas_Acceleration函数;低频接口控制函数包含:低频波特率校准LFBaudrateCalibration函数;高频接口控制函数包括:使能晶体工作S t a r t X t a l O s c函数、停止晶体工作St o p X t a l O sc函数、VCO工作V C O_T u n i n g函数、发射R F帧
S e n d_R F_T e l e g r a m函数;其他处理函数包括:P o w e r d o w n函数、CRC8校验CRC8_Calc函数、CRC16校验C R C16_C h e c k函数、读取设备标识码R e a d_I D函数、16位数据乘S M u l I n t I n t函数、间隔定时器校准IntervalTimerCalibration函数、获取硬件版本号FW_Revision_Nb函数。

由于安装在每个轮胎内部的轮胎压力传感器会存在同时发射高频数据可能性,数据之间会产生射频干扰,从而导致B C M控制器射频接收端无法收到正确的数据,这即是数据冲突。数据冲突是随机产生的,因而无法避免,但是要在产生冲突后将再次产生数据冲突的概率降低,避免造成连续的数据冲突。目前,系统在每个发射高频数据帧之间增加一段随机延时,随机延时的时间为数据帧时间长度的质数倍,即3倍、5倍、7倍、11倍和13倍。这样,如果前面有模块发生了数据冲突,则只有当发送冲突的模块的随机延时时间相同时才会再次产生数据冲突,此概率为4%。

结构设

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top