微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 基于C8051F的Zigbee无线网络的汽车测试系统设计

基于C8051F的Zigbee无线网络的汽车测试系统设计

时间:08-26 来源:电子设计工程 点击:

核心器件是Freescale公司的MCl3213。它是第2代标准ZigBee无线通信平台,在9 mmx9 mmxl mm 7l引脚LGA封装中集成有低功耗的2.4 GHz RF收发器和8位微控制器,MCl3213器件具有60 kB的闪存,MCl32lx解决方案能在简单的点对点连接到完整的ZigBee网状网络中用作无线连接,小占位面积封装中的无线电收发器和微控制器的组合使其成为成本效益的解决方案,MCl321x中的RF收发器工作在2.4 GHzISM频段,和802.15.4标准兼容,收发器包括低噪音放大器,1 mW的RF输出功率,带VCO的功率放大器(PA),集成的发送/接收开关,板内的电源稳压器以及完全的扩展频谱的编码和译码,MCl32lx中的微控制器基于HCS08系列微控制器单元(MCU),HCS08 A版本,高达60 kB的闪存和4 kB的RAM。

  SZ05-ADV嵌入式无线通信模块集成有符合ZIGBEE协议标准的射频收发器和微处理器,其数据接口包括:TTL电平收发接口、标准串口RS2-32 数据接口,可以实现数据的广播方式发送和目标地址发送模式。除可实现一般的点对点数据通信功能外,还可实现多点之间的数据通讯。其模块连接电路如图4所示。DATA、RUN、NET、ALARM为SZ05-ADV无线通信模块的4个工作状态指示端口,分别是数据收发、系统运行、网络状态和告警。 SLEEP引脚用来控制系统进入低功耗状态,低电平进入低功耗,高电平或悬空正常运行。

  485CTL引脚是485收发控制,模块485接收时低电平输出,发送时高电平输出。center、DEVICE引脚是节点功能配置接口,均为低电平有效,或分别与引脚tiao7、tiao8接跳线帽实现,如这2个引脚都为高电平或悬空则为路由节点。CONFIG引脚是配置接口,低电平有效,或加跳线帽,可在超级终端中进入系统配置状态。模块标准工作电压为DC-5V,正常工作电压范围为5~12V。数据接口有RS-232和TTL收发2种接口模式。 RS-232串口为TX2、RX2、SGND三线工作模式,TTL为TX1、RXl两线工作模式,TTL电平为3.3V。RESET进入低电平状态3s,系统进入配置状态,高电平或悬空状态则进入工作状态。

  无线通信网络节点按功能可分为中心协调器、路由器和终端节点,中心协调器是网络的中心节点,负责网络的发起组织、网络维护和管理功能;路由器负责数据的路由中继转发,终端节点只进行本节点数据的发送。在该系统中,可以预先在计算机超级终端中对无线模块进行节点类别、节点名称和地址、无线频点、网络ID、波特率和数据类型的配置,配置正确后在上电时可以自动组成网络。

  3 软件设计

  系统程序开发采用C805lF系列单片机的专用集成开发环境Silicon Laboratories IDE,配置使用Keil C5l的汇编器、链接器和编译器。利用C5l开发程序有利于系统程序的模块化以及增加其可移植性,并能降低开发周期。系统软件由主程序和A/D转换、数据处理和通信这3个子程序组成,其中主程序部分包括系统初始化、调用A/D转换、数据处理、串口发送等子程序。初始化部分包括:看门狗模块初始设置、系统时钟及复位源的设置、I/O端口初始化、串行通信接口初始化、A/D转换的初始化及定时器初始化等。ADC0的最高转换速度为。100 ks/-s,其转换时钟来源于系统时钟分频,分频值保持在寄存器ADCOCF的ADCSC位。在该片上系统中需要采集8个通道,将采样频率设置为50 000次/s。选用的ADCO转换启动方式为定时器3溢出(即定时的连续转换)方式。

  4 试验

  在Silicon Laboratories IDE中将程序通过U-EC2专用编程器烧写入C805117020后,将各个模块连接进行调试,如图5所示。8路传感器信号(包括2路压变传感器,2路 -5~+5 V信号,2路4~20 mA信号和2路热电偶信号)经前端处理后送至MCU,经A/D转换和数据处理后通过串口输出到Zigbee终端节点并在无线网络中按目的地址模式或广播模式发送,Zigbee中心协调器与上位机通过标准RS232串口连接,可以在超级终端或串口调试器中查看收到的数据。本研究侧重于实验开发,电源模块可采用将常见的220 V转双9 V变压器,经整流桥后,由LM7805、LM7905稳压输出-5 V和+5 V的结构(3.3 V电压可由AMSlll7模块转换后得到),实际应用中可设计专门的电源模块以方便使用。试验结果表明,系统可以实现2个终端节点的各自8路传感器数据采样,Zigbee无线网络运行正常,在超级终端中可以看到试验的实时数据。

  5 结束语

本文设计的基于C805lF020和Zigbee无线网络的汽车测试系统实现了汽车试验中数据的无线传输,从而简化了试验现场布线,提高了试验效率,一旦试验事故发生,损失也大大减少,实验证明了该系统取代传统汽车测试系统的可行性,同时系统的扩展也比较容易,可以实现更多功能。本研究

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top