微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 汽车音响直流电源滤波器的设计

汽车音响直流电源滤波器的设计

时间:05-08 来源:德尔福中国技术研发中心 点击:

对于瞬态干扰信号,插入损耗要尽可能增大,即尽可能增大信号的反射。根据信号传输理论,当电源的输出阻抗ZO≠滤波器的输人阻抗ZI 时,在电源滤波器的输入端口就会发生反射,反射系数 p=(ZO-ZI)/(ZO+ZI)。

显然,ZO 与ZI 相差越大,p 便越大,端口产生的反射越大,瞬态干扰信号就越难通过。所以,直流电源滤波器输入端口应与汽车供电系统的输出端口处于失配状态,使瞬态干扰信号产生反射,有效抑制瞬态干扰信号进入汽车音响电路。同理,滤波器输出端口应与负载处于失配状态,使汽车音响内部产生的CE 辐射信号产生反射,降低对外围用电设备的干扰。因此,电源滤波器的设计应遵循下列原则:

a) 源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。
b) 负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。

根据ISO 16750-2 和ISO 7637-2 中对连续电源的内阻Ri 的要求(见表1):其应小于直流0.01Ω。对于低于400Hz 的频率而言,连续电源内部阻抗应为Zi=Ri, 对于不同的瞬态脉冲,Ri 是不同的,参见下表中12V 和24V 供电系统的Ri。输出电压在0Ω负载到最大负载(包括窜入电流)之间的变化不应超过1V,它应在100us 的时间内恢复其最大幅度的63%。叠加脉动电压Ur 的峰值间应不超过0.2V,最低频率应为400Hz。


对于供电系统中的瞬态干扰信号,电感是高阻的,电容是低阻的,所以,电源滤波器与源或负载的端接应遵循下列原则:

a) 如果电源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。
b) 如果电源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。

3.汽车音响直流电源滤波器的设计

通过采用阻抗失配原则选定了电源滤波器的结构,基本上已经决定了电源滤波器的效率。滤波网络两端的阻抗差异越大,滤波器的效率越高,滤波效果也就越好。此外,滤波器的插入损耗,即插入电源噪声滤波器后噪声干扰的衰减程度,这也是在实际设计和使用电源噪声滤波器中最需要考虑的因素之一。一般可以用电压幅值的比值来计算表示插入损耗,其值越大,表示滤波器抑制噪声干扰的能力越强。

图3

就汽车音响独立个体而言, 汽车音响直流电源滤波器为差模噪音信号滤波器,采用滤波扼流圈和滤波电容组成的差模干扰滤除回路。由于差模电容的作用,差模干扰电流将通过电容流回电源线而不流入汽车音响中。但从系统而言,电源导线、汽车音响和地平面(汽车底盘)构成了共模噪音信号返回路径,如图3 所示:为了降低系统的传导发射性能,要求汽车音响的外壳要有一个良好的接地位置,降低共模电流或消除共模电流的存在。在CISPR25 的6.1.2 中规定,如果EUT 的电源返回路径超过200mm,就将作为远端接地处理,如果EUT 的电源返回路径小于等于200mm,就作为近端接地,可以忽略共模电流的影响,降低共模电流引发的传导发射危害性,这就是为什么在汽车音响设计中尽可能的确保外壳与整车的底盘有良好的搭接。见下图4 是汽车音响电路中常见的直流电源滤波器电路图。

图4

差模电容使用的类型是陶瓷电容,考虑到其实际电压值是额定交流电压和电磁干扰峰值电压的叠加值,因此要求差模电容要有足够高的耐压值,一般不低于50VDC。电容容量值可按照所抑制的噪声电压频率下限值来确定,其值越大,滤波器的插入损耗也就越大。

差模扼流圈通常使用金属粉压磁芯(Iron Power Core),因为其初始磁导率受频率影响小,高频工作下损耗大,直流重叠特性好,大电流应用时电感量也不会大幅度下降,且适用频率范围较低。依流过电感的电流值不同,设计中的电感值可以取为几mH~几十uH。

下图为三种不同的磁芯,其电感量随电流的变化的曲线。从图5 中可以看出:在设计汽车音响直流电源滤波器时,要根据工作电流的范围来选择合适的扼流圈。当汽车音响的正常工作电流大于3A 时,若选择图中POT 磁芯的扼流圈,电感量急剧降低,根本起不到滤波器的效果。

图5

针对汽车供电系统中的瞬态脉冲噪音,一般集中在音频范围内(20Hz 至20KHz),因此,在产品设计和PCB Layout 中如何抑制音频噪音干扰(AFI = Audio Frequency Interference)成为汽车音响设计的一项重要性能评估指标。理论上,电源滤波器的电感和电容的参数选的越大,滤波效果越好。但在实际应用中,容量大的电容一般寄生电感也大,自谐振频率低,对高频噪声的去耦效果差,而电感值越大电感的体积也越大,所以在设计时应权衡各种因素的影响,确定合适的参数。在实际产品设计中,除了考虑来自汽车供电系统瞬态噪音的抑制,还要考虑高电压(

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top