CPU制作过程全解密,这就是英特尔/AMD 处理器高价的原因
特制刻蚀槽内,可以溶解掉暴露出来的晶圆部分,而剩下的光刻胶保护着不需要蚀刻的部分。期间施加超声振动,加速去除晶圆表面附着的杂质,防止刻蚀产物在晶圆表面停留造成刻蚀不均匀。
10.清除光刻胶
通过氧等离子体对光刻胶进行灰化处理,去除所有光刻胶。此时就可以完成第一层设计好的电路图案。
11.重复第6-8步
由于现在的晶体管已经3D FinFET设计,不可能一次性就能制作出所需的图形,需要重复第6-8步进行处理,中间还会有各种成膜工艺(绝缘膜、金属膜)参与到其中,以获得最终的3D晶体管。
12.离子注入
在特定的区域,有意识地导入特定杂质的过程称为"杂质扩散"。通过杂质扩散可以控制导电类型(P结、N结)之外,还可以用来控制杂质浓度以及分布。
现在一般采用离子注入法进行杂质扩散,在离子注入机中,将需要掺杂的导电性杂质导入电弧室,通过放电使其离子化,经过电场加速后,将数十到数千keV能量的离子束由晶圆表面注入。离子注入完毕后的晶圆还需要经过热处理,一方面利用热扩散原理进一步将杂质"压入"硅中,另一方面恢复晶格完整性,活化杂质电气特性。
离子注入法具有加工温度低,可均匀、大面积注入杂质,易于控制等优点,因此成为超大规模集成电路中不可缺少的工艺。
13再次清除光刻胶
完成离子注入后,可以清除掉选择性掺杂残留下来的光刻胶掩模。此时,单晶硅内部一小部分硅原子已经被替换成"杂质"元素,从而产生可自由电子或空穴。
左:硅原子结构;中:掺杂砷,多出自由电子;右:掺杂硼,形成电子空穴
14.绝缘层处理
此时晶体管雏形已经基本完成,利用气相沉积法,在硅晶圆表面全面地沉积一层氧化硅膜,形成绝缘层。同样利用光刻掩模技术在层间绝缘膜上开孔,以便引出导体电极。
15.沉淀铜层
利用溅射沉积法,在晶圆整个表面上沉积布线用的铜层,继续使用光刻掩模技术对铜层进行雕刻,形成场效应管的源极、漏极、栅极。最后在整个晶圆表面沉积一层绝缘层以保护晶体管。
16.构建晶体管之间连接电路
经过漫长的工艺,数以十亿计的晶体管已经制作完成。剩下的就是如何将这些晶体管连接起来的问题了。同样是先形成一层铜层,然后光刻掩模、蚀刻开孔等精细操作,再沉积下一层铜层。。。。。。这样的工序反复进行多次,这要视乎芯片的晶体管规模、复制程度而定。最终形成极其复杂的多层连接电路网络。
由于现在IC包含各种精细化的元件以及庞大的互联电路,结构非常复杂,实际电路层数已经高达30层,表面各种凹凸不平越来越多,高低差异很大,因此开发出CMP化学机械抛光技术。每完成一层电路就进行CMP磨平。
另外为了顺利完成多层Cu立体化布线,开发出大马士革法新的布线方式,镀上阻挡金属层后,整体溅镀Cu膜,再利用CMP将布线之外的Cu和阻挡金属层去除干净,形成所需布线。
大马士革法多层布线
芯片电路到此已经基本完成,其中经历几百道不同工艺加工,而且全部都是基于精细化操作,任何一个地方出错都会导致整片晶圆报废,在100多平方毫米的晶圆上制造出数十亿个晶体管,是人类有文明以来的所有智慧的结晶。
后工程--从划片到成品销售
17. 晶圆级测试
前工程与后工程之间,夹着一个Good-Chip/Wafer检测工程,简称G/W检测。目的在于检测每一块晶圆上制造的一个个芯片是否合格。通常会使用探针与IC的电极焊盘接触进行检测,传输预先编订的输入信号,检测IC输出端的信号是否正常,以此确认芯片是否合格。
由于目前IC制造广泛采用冗余度设计,即便是"不合格"芯片,也可以采用冗余单元置换成合格品,只需要使用激光切断预先设计好的熔断器即可。当然,芯片有着无法挽回的严重问题,将会被标记上丢弃标签。
18.晶圆切片、外观检查
IC内核在晶圆上制作完成并通过检测后,就进入了划片阶段。划片使用的划刀是粘附有金刚石颗粒的极薄的圆片刀,其厚度仅为人类头发的1/3。将晶圆上的每一个IC芯片切划下来,形成一个内核Die。
裂片完成后还会对芯片进行外观检查,一旦有破损和伤痕就会抛弃,前期G/W检查时发现的瑕疵品也将一并去除。
未裂片的一个个CPU内核
19.装片
芯片进行检测完成后只能算是一个半成品,因为不能被消费者直接使用。还需要经过装片作业,将内核装配固定到基片电路上。装片作业全程由于计算机控制的自动固晶机进行精细化操作。
20.封装
装片作业仅仅是完成了芯片的固定,还未实现电气的连接,因此还需要与封装基板上的触点结合。现在通
- 大尺寸面板价格不涨反跌 市场供需失衡难落幕(07-29)
- Intel扩大领先优势 2011占有率创新高(03-30)
- PC市场疲软 Intel 14nm工艺得推迟半年(11-12)
- Intel:平板电脑并非传统PC的克星(05-27)
- Intel固态硬盘超频值得吗?(08-28)
- 台积晶圆霸位 Intel难撼动(11-28)