微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 单片机系统的低功耗设计策略

单片机系统的低功耗设计策略

时间:10-23 来源: 点击:

以R系列单片机为例:在室温(25℃)下,不包括I/O口的负载,以2 V供电,将可编程锁相环时钟设为16 MHz(总线时钟8 MHz),典型电流值为2.6 mA,当温度升高到85℃时,供电电流也升高到3.6 mA;而采用3 V供电,这一组数据升高至3.8 mA和4.8 mA。用2 V供电,直接使用外部晶振2 MHz(总线时钟1 MHz)时,典型运行电流降至450 μA。在等待状态下,因时钟并没有停止,耗电情况和时钟频率有很大关系,节省的功耗有限;而进入轻度停止(stop3),以外部中断唤醒,电流消耗在0. 5 μA左右。在中度停止态(stop2),功耗可进一步降低。使用内部1 kHz的时钟,保持1个运行的时钟,周期性唤醒CPU,所增加的电流约为0.3 μA。在深度停止态(stop1),RAM的数据也不再保留,只能通过外部复位重启系统,此时的电流消耗可降到20 nA。以上数据都是在室温下测量所得。当环境温度升高到85℃时,电流消耗可能增加3~5倍。

1.4选择合适的时钟方案

  时钟的选择对于系统功耗相当敏感,设计者需要注意两个方面的问题:

  第一是系统总线频率应当尽量低。单片机内部的总电流消耗可分为两部分--运行电流和漏电流。理想的CMOS开关电路,在保持输出状态不变时,是不消耗功率的。例如,典型的CMOS反相器电路,如图2所示,当输入端为零时,输出端为1,P晶体管导通,N晶体管截止,没有电流流过。而实际上,由于N晶体管存在一定漏电流,且随集成度提高,管基越薄,漏电流会加大。温度升高,CMOS翻转阈电压会降低,而漏电流则随环境温度的增高变大。在单片机运行时,开关电路不断由"1"变"0"、由"0"变"1",消耗的功率是由单片机运行引起的,我们称之为"运行电流"。如图2所示,在两只晶体管互相变换导通、截止状态时,由于两只管子的开关延迟时间不可能完全一致,在某一瞬间会有两只管子同时导通的情况,此时电源到地之间会有一个瞬间较大的电流,这是单片机运行电流的主要来源。可以看出,运行电流几乎是和单片机的时钟频率成正比的,因此尽量降低系统时钟的运行频率可以有效地降低系统功耗。           
                  
图2典型的CMOS反相器

  第二是时钟方案,也就是是否使用锁相环、使用外部晶振还是内部晶振等问题。新一代的单片机,如飞思卡尔的HCS08系列单片机,片内带有内部晶振,可以直接作为时钟源。使用片内晶振的优点是可以省掉片外晶振,降低系统的硬件成本;缺点是片内晶振的精度不高(误差一般在25%左右,即使校准之后也可能有2%的相对误差),而且会增加系统的功耗。

  现代单片机普遍采用锁相环技术,使单片机的时钟频率可由程序控制。锁相环允许用户在片外使用频率较低的晶振,可以很大地减小板级噪声;而且,由于时钟频率可由程序控制,系统时钟可以在一个很宽的范围内调整,总线频率往往能升得很高。但是,使用锁相环也会带来额外的功率消耗。

  单就时钟方案来讲,使用外部晶振且不使用锁相环是功率消耗最小的一种。

2 应用软件方面的考虑

  之所以使用"应用软件"的说法,是为了区分于"系统软件"或者"实时操作系统"。软件对于一个低功耗系统的重要性常常被人们忽略。一个重要的原因是,软件上的缺陷并不像硬件那样容易发现,同时也没有一个严格的标准来判断一个软件的低功耗特性。尽管如此,设计者仍需尽量将应用的低功耗特性反映在软件中,以避免那些"看不见"的功耗损失。

2.1 用"中断"代替"查询"

  一个程序使用中断方式还是查询方式对于一些简单的应用并不那么重要,但在其低功耗特性上却相去甚远。使用中断方式,CPU可以什么都不做,甚至可以进入等待模式或停止模式;而查询方式下,CPU必须不停地访问I/O寄存器,这会带来很多额外的功耗。

2.2 用"宏"代替"子程序"

  程序员必须清楚,读RAM会比读Flash带来更大的功耗。正是因为如此,低功耗性能突出的ARM在CPU设计上仅允许一次子程序调用。因为CPU进入子程序时,会首先将当前CPU寄存器推入堆栈(RAM),在离开时又将CPU寄存器弹出堆栈,这样至少带来两次对RAM的操作。因此,程序员可以考虑用宏定义来代替子程序调用。对于程序员,调用一个子程序还是一个宏在程序写法上并没有什么不同,但宏会在编译时展开,CPU只是顺序执行指令,避免了调用子程序。唯一的问题似乎是代码量的增加。目前,单片机的片内Flash越来越大,对于一些不在乎程序代码量大一些的应用,这种做法无疑会降低系统的功耗。

2.3 尽量减少CPU的运算量

减少CPU运算的工作可以从很多方面入手:将一些运算的结果预先算好,放在Flash中,用查表的方法替代实时的计算,减少CPU的运算工作量

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top