微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 矢量信号分析基础

矢量信号分析基础

时间:06-20 来源:mwrf 点击:

时域波形,减少频域中的泄漏误差。

Agilent 89600B VSA 基于用户选定的测量类型假设用户的优先考虑情况,自动选择适合的窗滤波器。不过,如果希望手动改变窗类型,你可以从几种内置的窗类型中选择。每个窗功能及其相关的RBW 滤波器形状拥有各自的优势和劣势。某窗类型可能改善了幅度精度并减少了"泄漏",但代价却是减小了频率分辨率。因为每种窗类型产生不同的测量结果( 差异大小取决于输入信号的特性以及触发方式),所以你需要针对所进行的测量谨慎选择适合的窗类型。表1 总结了四种常见的窗类型及其用途。

窗滤波器对分辨率带宽的影响

在传统的扫频调谐分析中,最后的IF 滤波器决定了分辨率带宽。在FFT分析中,窗类型决定了分辨率带宽滤波形状。窗类型和时间记录长度决定了分辨率带宽滤波的宽度。因此,对于给定的窗口类型,分辨率带宽的改变将直接影响时间记录长度。反之,时间记录长度的改变也会导致分辨率带宽变化,如下式所示:

RBW = 归一化的ENBW/T
其中ENBW = 等效噪声带宽
RBW = 分辨率带宽
T = 时间记录长度

等效噪声带宽(ENBW) 是窗口滤波器与理想矩形滤波器进行比较的因数。它等效于通过与窗口滤波器相同数量( 功率) 白噪声时矩形滤波器的带宽。表1-2 列出了几种窗类型的归一化ENBW 值。ENBW 等于归一化的ENBW 除以时间记录长度。例如,0.5 秒时间记录长度的汉宁窗的ENBW 为3 Hz (1.5 Hz-s/0.5 s)。

快速傅立叶变换(FFT)分析

信号现在已经准备好进行FFT 变换。FFT 是针对记录以特殊方式处理采样数据的算法。FFT 不像ADC 转换那样对每个数据采样进行处理,而是等到获得一定数量的样本(N) ( 称为时间记录) 之后,再将整个数据块进行转换。参见图9。换句话说,在FFT 中,输入是N 个样本的时间记录,输出是N 个样本的频谱。

FFT 的速度取决于对称性或未落入限定的2 的N 次方的重复采样值。FFT 分析的典型记录长度为1024 (210) 个采样点。FFT 生成的频谱在采样频率fs/2 ( 这个值称为"折叠频率",ff) 两侧对称。因此,输出记录的前半段包含的是冗余信息,所以只有后半段被保留,即采样点0 至N/2。这表明输出记录的有效长度为(N/2) + 1。必须给N/2 加1,因为FFT 包含零点线,输出从0 Hz 至N/2 Hz 的结果。这些都是包括幅度和相位信息的复数数据点。

理论上,FFT 算法输出的是从0 Hz 到 ff 范围内的(N/2) +1 个频率点。不过实际中,因为需要使用预防混叠的保护带,所以通常不是所有点都被显示出来。如上所述,保护带( 大约在 fs 的40% 至50% 之间) 不显示,因为它可能被混叠分量破坏。例如,对于记录长度为2048 的样本,会产生1025 个唯一的复数频率点,而实际上只有801 个频率点会被显示出来。

图9. FFT 的基本关系

这些频域点被称为"线(line)"或"点(bin)",通常编号从0 到N/2 。这些点相当于一组滤波器分析中的单独的滤波器/ 检波器输出。点0 包含输入信号中的DC 电平,称为DC 点。这些点在频率上的间割是相通的,频率步长(Δf) 是测量时间记录长度(T) 的倒数,即 Δf = 1/T。时间记录长度(T) 由采样率(fs) 和时间记录中的采样点数(N) 来确定: T = N/fs。每个点的频率(fn) 如下:

fn = nfs/N

其中,n 为点数

最后一个点包含最高频率 fs/2。因此FFT 的频率范围从0 Hz 到 fs/2。注意FFT 最高的频率范围不是FFT 算法的频率上限 fmax,并且可能不同于最高的点频率。

实时带宽

因为FFT 分析在获得至少一个时间记录之前不能计算出有效的频域结果,所以时间记录长度决定了初始测量花费的时间。例如,使用1 kHz 扫宽的400线测量需要400 ms 的时间记录; 3200 线测量需要3.2 s 的时间记录。捕获的数据时间长度与FFT 计算引擎的处理速度无关。

在时间记录被捕获之后,处理速度成为一个问题。计算FFT、调整格式和显示数据结果所用的时间长短决定了处理的速度和显示更新的速率。处理速度的重要性体现在两个方面。首先,高处理速度意味著总测量时间缩短。其次,处理速度决定了测量动态信号的能力。它的性能指标是实时带宽(RTBW),即在不丢失输入信号的任何事件的情况下,可以连续处理的最大频率扫宽。

图10. (a) 当FFT 处理时间 ≤ 时间记录长度时,处理是"实时"的;没有数据丢失。(b) 如果FFT 处理时间> 时间记录长度,那么输入数据会丢失。

RTBW 是FFT 处理时间等于时间记录长度的频率扫宽。从一个时间记录结束到下一个时间记录开始之间没有间隔。参见图10。如果增加扫宽到超过实时带宽,记录长度就会变得小于FFT 处理时间,那么时间记录不再是连续的,有些数据将会丢失。这在RF

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top