微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 都想吞下人工智能这个蛋糕,CPU/GPU/FPGA有何高招?

都想吞下人工智能这个蛋糕,CPU/GPU/FPGA有何高招?

时间:03-14 来源:行业报告研究院 点击:

大的从少数样本集中学习数据集本质特征的能力,并使概率向量更加收敛。

  

简单来说,深度学习神经网络对数据的处理方式和学习方式与人类大脑的神经元更加相似,比传统的神经网络更准确。

  

我们回过头来看这个停止标志识别的例子:深度学习神经网络从成百上千甚至几百万张停止标志图像中提取表征数据,通过重复训练将神经元输入的权重调制得更加精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子。

  

Google的AlphaGo也是先学会了如何下围棋,然后通过不断地与自己下棋,训练自己的神经网络,这种训练使得AlphaGo成功在三个月后击败了等级分数更高的李世石。

  

二、深度学习的实现

深度学习仿若机器学习最顶端的钻石,赋予人工智能更璀璨的未来。其摧枯拉朽般地实现了各种我们曾经想都不敢想的任务,使得几乎所有的机器辅助功能都变为可能。更好的电影推荐、智能穿戴,甚至无人驾驶汽车、预防性医疗保健,都近在眼前,或者即将实现。人工智能就在现在,就在明天。你的C-3PO我拿走了,你有你的终结者就好。

  

但是正如前面提到的,人工神经网络,即深度学习的前身,已经存在了近三十年,但直到最近的5到10年才再次兴起,这又是因为什么?

  

1.突破局限的学习算法

20世纪90年代,包括支撑向量机(SVM)与最大熵方法(LR)在内的众多浅层机器学习算法相继提出,使得基于反向传播算法(BP)的人工神经网络因难以弥补的劣势渐渐淡出人们的视线。直到 2006年,加拿大多伦多大学教授、机器学习领域的泰斗 Geoffrey Hinton 和他的学生在《科学》上发表了一篇文章,解决了反向传播算法存在的过拟合与难训练的问题,从而开启了深度学习在学术界和工业界的浪潮。

  

深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,"深度模型"是手段,"特征学习"是目的。区别于传统的浅层学习,深度学习的不同在于:

强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;

明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。

  

这种算法的差别提升了对训练数据量和并行计算能力的需求,而在当时,移动设备尚未普及,这使得非结构化数据的采集并不是那么容易。

2.骤然爆发的数据洪流

深度学习模型需要通过大量的数据训练才能获得理想的效果。以语音识别问题为例,仅在其声学建模部分,算法就面临着十亿到千亿级别的训练样本数据。训练样本的稀缺使得人工智能即使在经历了算法的突破后依然没能成为人工智能应用领域的主流算法。直到2012年,分布于世界各地的互相联系的设备、机器和系统促进了非结构化数据数量的巨大增长,并终于在可靠性方面发生了质的飞跃,大数据时代到来。

  

大数据到底有多大?一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多,相当于美国两年的纸质信件数量;发出的社区帖子达200万个,相当于《时代》杂志770年的文字量;卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万倍。然而,即使是人们每天创造的全部信息,包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身活动的数字信息量。

  

我们现在还处于所谓"物联网"的最初级阶段,随着技术的成熟,我们的通讯设备、交通工具和可穿戴科技将能互相连接与沟通,信息量的增加也将以几何倍数持续下去。

  

3.难以满足的硬件需求

骤然爆发的数据洪流满足了深度学习算法对于训练数据量的要求,但是算法的实现还需要相应处理器极高的运算速度作为支撑。当前流行的包括X86和ARM在内的传统CPU处理器架构往往需要数百甚至上千条指令才能完成一个神经元的处理,但对于并不需要太多的程序指令,却需要海量数据运算的深度学习的计算需求,这种结构就显得非常笨拙。尤其是在当前功耗限制下无法通过提升CPU主频来加快指令执行速度,这种矛盾愈发不可调和,深度学习研究人员迫切需要一种替代硬件来满足海量数据的运算需求。

或许终有一日将会诞生全新的、为人工智能而专门设计的处理器架构,但在那之前的几十年,人工智能仍然要向前走,便只能改进现有处理器,使之成为能够最大程度适应大吞吐量运算的计算架构。目前来

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top