探究存储器特性以分析和预测应用处理器性能及功耗
率、总体缓存存取量,还是主存储器访问率,都无法用以区分存储器存取是否对性能有关键影响。幸运的是,我们发现,数据停顿率是一个非常好的指标。显然,除了MP3解码器,对所有其它应用,数据停顿率曲线与应用成本都是同步的。在我们所做的实验中,数据停顿率是用来预测应用负载的最佳衡量指标。MP3解码器的存储器存取频度极低,因此,在整体上存储器存取操作非常少的情况下,即使存在一些能产生关键影响的存储器存取操作,它对性能的影响也是微不足道的。
图2提供了一种基于存储器特性预测CPU利用率的算法。该算法首先检查,存储器访问率是否低于预先定义的门限T1。如果是,我们就预测,CPU利用率与CPU频率呈线性关系;否则,就分两步预测CPU利用率:(1)与频率成比例;(2)根据数据停顿率调整。在第二步,我们再引入两个门限:T2和T3。为了采用这个算法,我们必须跟踪主存储器访问率和数据停顿率。因此,最多必须监视3种PMU信息:(a)外部存储器控制器被占用的总周期数;(b)由于数据相关性而导致流水线停顿的总次数;(c)监视窗口中的总周期数。(a)/(c)给出DDR%,而(b)/(c)给出Stall%。这种算法可以很容易纳入电源管理框架中。
图2:一种简单的性能预测算法。
本文结论
总之,如果整体上存储器存取频度可以忽略不计,那么就可以预测,CPU利用率与CPU频率成比例。如果存储器存取频度并非微不足道,那么预测CPU利用率时,就应该同时使用数据停顿率。本白皮书是基于一篇会议论文撰写的,该论文研究了有助于表征存储器特性的3种存储器指标,论文以此为基础提出了一种改进性能预测的算法。未来的工作可能还包括:用更多应用做实验;基于用户输入和/或更多系统反馈设计动态自适应门限,以此优化我们的算法。
- 嵌入式存储器的设计方法和策略(05-12)
- DSP中的存储器共享与快速访问技术设计(06-28)
- 基于DBL结构的嵌入式64kb SRAM的低功耗设计(10-15)
- 基于NiosII的SOPC多处理器系统设计方法(02-10)
- 提高存储器子系统效率的三种方法(04-07)
- 铁电存贮器FRAM技术原理(06-08)