微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚敐澶婄闁挎繂妫Λ鍕磼閻愵剙鍔ゆ繛纭风節瀵鎮㈤崨濠勭Ф闂佸憡鎸嗛崨顔筋啅缂傚倸鍊烽懗鑸靛垔椤撱垹鍨傞柛顐f礀閽冪喖鏌曟繛鐐珕闁稿妫濋弻娑氫沪閸撗€妲堝銈呴獜閹凤拷04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴銏♀拻濞达綀娅g敮娑㈡煕閺冣偓濞茬喖鐛弽顓ф晝闁靛牆娲g粭澶婎渻閵堝棛澧遍柛瀣仱閹繝濡烽埡鍌滃幗闂佸搫娲ㄩ崑娑㈠焵椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹26闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欑紒鎾剁窗闂佸憡顭嗛崘锝嗙€洪悗骞垮劚濞茬娀宕戦幘鑸靛枂闁告洦鍓涢敍娑㈡⒑閸涘⿴娈曞┑鐐诧躬閹即顢氶埀顒€鐣烽崼鏇ㄦ晢濠㈣泛顑嗗▍灞解攽閻樺灚鏆╁┑顔芥尦楠炲﹥寰勯幇顒傦紱闂佽宕橀褔鏌ㄩ妶鍡曠箚闁靛牆瀚崗宀勬煕濞嗗繑顥㈡慨濠呮缁辨帒螣閼姐値妲梻浣呵归敃銈咃耿闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷�
首页 > 硬件设计 > MCU和DSP > 100MHz 数字存储示波表样机的研究与试制----数据采集系统设计

100MHz 数字存储示波表样机的研究与试制----数据采集系统设计

时间:01-30 来源:3721RD 点击:

第三章数据采集系统设计

数据采集系统是数字存储示波表的核心部分,它完成由模拟信号到数字信号的转换,即模拟信号经调理通道后进入A/D转换成数字量,再将这些数字量存入缓存器FIFO,由DSP读回进行计算处理,最后送去显示。

3.1 A/D的选择

数字存储示波表要显示信号波形首先要对模拟信号进行采样。所谓采样就是对模拟信号进行量化的过程。而量化过程实际上存在着许多限制。首先,它要受到量化范围的限制。由于A/D总有一定的输入量程,超出了该量程,转换结果就会出现很大的误差。例如,信号如果超出了上限,那么A/D只能给出最大码值;反之,如果超出了下限,只能给出最小码值。这样,采样结果就会相对于模拟信号产生很大的畸变,不能有效的反映真实的信号信息。另外,A/D对量化值进行编码的位数决定了采样模拟信号的精确性。编码位数越多,对模拟信号的分辨率也就越高,采样出来的信号电压值也就更准确。在实际应用中我们选择的模拟/数字变换器(ADC)是ANALOG DEVICE公司的AD9288,它的基本性能描述如下:

◆两个八位模拟/数字变换通道,100MSPS采样率/每通道

◆低功耗:90mW/每通道(100MSPS时)

◆片内提供参考电压和采样、保持电路

◆模拟通道:475MHz模拟带宽信噪比:SNR=47dB@41MHz

◆模拟输入范围:1Vpp/每通道

◆单电压供电(+3.0V)

◆等待模式选择

◆两种数据输出格式

◆输出数据与拼接模式

AD9288是双通道八位单片模拟/数字转换器,具有内部的采样保持电路,是一款低价格、低功耗、体积小易于使用的优化产品。它工作在100MSPS转换率时同样具有出色的动态性能,并且两个通道可以完全独立工作。

这款模拟/数字变换器只需要单3.0V电源供电(2.7V-3.6V),提供编码时钟输入方式,在大多数应用领域,不需要外接参考电压或者是驱动器件。数字输出和TTL/CMOS兼容,并且有独立的输出供电引脚,支持多数字逻辑电压(2.5V或3.3V)接口。编码输入是与TTL/CMOS兼容的,并且8位数字输出能在2.5V到3.3V电压范围内工作(典型值为3.0V)。用户选择项提供联合等待模式、数据格式选择,数据拼接模式。在等待模式下,数据输出处于高阻状态。先进的CMOS工艺使得AD9288体积超小(7mm * 7mm * 1.4mm),采用48PIN_LQFP封装。

工业制品温度范围:(-40℃-+85℃)。

AD9288提供的S1、S2两个引脚可以用来选择多种操作模式。操作模式如表3-1.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...

如表所示,当S1、S2都设置为1时,AD9288工作在双通道拼接模式。所谓拼接模式即是允许使用者将B通道输出数据错位半个周期。也就是说,向A、B两个通道提供相同的采样时钟(CLK_A=CLK_B),对同一信号进行采样。两通道的数据同在CLK_A上升沿有效。这样,在输出时B通道的数据就和A通道的数据相差180度相位。从而,使采样率达到了普通工作模式下的2倍。这一功能是非常有用的:如果用100MSPS的采样率对20MHz信号进行采样每个周期只能得到5个采样点,只能基本恢复和再现信号波形,如果利用相同的时钟,工作在拼接模式,将一个被测信号同时送入两个通道,就可以得到10个采样点,重现波形的效果会得到很大改善。我们在实际使用中,令其工作在普通模式下,两通道采集相互独立,及S1=1,S2=0.其具体连接图如图3-1所示。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...

3.2 FIFO的构成

当模拟信号被A/D采样进来以后,需要有一个能够快速保存采样数据的存储器。FIFO(First In First Out)是一种先进先出(即第一个读出来的数据就是第一个写进去的数据)存储器。它没有地址线,省去了寻址时间。另外,它还可以同时对存储空间进行读写。所以,它比一般存储器的读取速度要快很多。能够满足在高速采样时,对存储器快速读写的要求。在实际应用中,我们没有采用现成的FIFO芯片。而是利用FPGA里面自带的5K RAM,通过MAX-PLUS II调用它宏单元库MEGA_LPM里的库文件LPM_FIFO_DC,把它设置成为两个2.5K的FIFO.由于一个LPM_FIFO_DC库文件只能实现2n个存储空间。所以,我们调用了两个库文件(大小分别为2 9=512和2 11=2048)串连,来实现2.5K的空间。
具体连接如图3-2.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑娑⑺囬悽绋垮瀭濡わ絽鍟粻娑樏归敐鍛础缂佸鑳剁槐鎾诲磼濮橆兘鍋撻悜鑺ュ€块柨鏇氱劍閹冲矂姊绘担鍛婂暈闁荤喆鍎抽幑銏狀潨閳ь剙顕f繝姘亜缁炬媽椴搁弲顒勬⒑閹稿海绠撴繛璇х到鏁堟俊銈呮噺閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濞戞ɑ璇為梺璇″枟閻燂妇鎹㈠┑瀣倞闁靛ě鍐ㄥ婵犵數濮烽弫鎼佸磹椤栫偛鐒垫い鎺戝绾惧鏌熼崜褏甯涢柣鎾寸洴閹鏁愭惔鈥茬敖婵犫拃鍐粵闁逛究鍔嶇换婵嬪川椤曞懍鍝楅梻浣告贡閹虫挾鈧氨澧楁穱濠囧箹娴h倽銊╂煥閺冣偓閸庡磭绱為幒妤佲拻闁稿本鐟ㄩ崗宀勬煙閾忣偅宕岀€规洜鏁诲浠嬵敇閻愭鍞甸梻浣芥硶閸o箓骞忛敓锟�...

如图所示,一个LPM_FIFO_DC库文件有一个写使能信号wrreq,一个写时钟信号wrclock,一个读使能信号rdreq,一个读时钟信号rdclock,一个清除端aclr,8位数据输入线和8位数据输出线;同时还有两个状态端:FIFO满信号wrfull和FIFO空信号rdempty.它的具体工作原理是:1.写FIFO时,数据首先进入0.5K的FIFO.此时,0.5K FIFO读写使能同时有效,数据进入0.5K FIFO后,随即被写入到2K的FIFO.当2K的FIFO写满后,此FIFO模块的满信号有效,使得

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top