基于SoC的高精度倾角测量系统的设计
在地质石油勘探、设备安装、道路桥梁建设等工程应用以及机器人控制、坦克和舰船火炮平台控制、飞机姿态控制等系统的自动 水平调节中,都需要高精度的倾角测量。但高精度的倾角,测量设备通常体积较大,成本高,使许多工程应用受到限制。本文从倾角的高精度测量出发,着重介绍了 倾角
1 倾角测量系统的硬件设计
倾角测量系统硬件部分主要由MEMS传感器(含双轴倾角传感器和
1.1 MEMS倾角传感器接口
MEMS倾角传感器采用芬兰VTI Technologies公司的SCA100T系列中的SCA100T-D01,测量范围为±30°。SCA100T系列是采用微机电系统(MEMS)技 术制造的一款高分辨率双轴倾角传感器。SCA100T-D01数字输出分辨率为0.035°/LSB,
SCA100T-D01内置温度传感器,可以通过其自带的SPI数字接口读取温度值,并在处理器中进行相应的温度补偿。这是保证系统精度的又一方法。
1.2 阻抗匹配及放大
SCA100T-D01输出阻抗为10 kΩ,为保证MEMS倾角传感器SCA100T-D01输出的信号有效地传递,即要求衰减最小,设计中采用了具有高输入阻抗的场效应管型运放TL081设计了阻抗匹配电路,采用同相输入,以提高输入阻抗。
信号放大电路采用ICL7653斩波稳零
1.3 差分转换及驱动
如图3所示,差分转换电路以AD8138AR为核心,将单端信号转换差分信号,既可以提高共 模抑制比,有效减小共模信号影响,又可以驱动SOC内部的24位差分Sigma-Delta模/数转换器。AD8138AR具有较宽的模拟带宽(320 MHz,-3 dB。增益为1时),而且AD8138AR为表面封装器件,器件体积小,使得ADC与信号输入点的距离可以很近,大大减少了外界噪声的影响。
1.4 SOC微控制器资源分配
本设计选用Silicon Labs公司的C8051F350作为处理核心。C8051F350是真正能独立工作的片上系统(SOC),它自带8K字节Flash存储器,可在系统编 程;集成了1个全差分24位Siva-Delta模/数转换器(ADC),该ADC具有在片校准功能,2个独立的数字抽取滤波器可被编程到1 kHz的采样率;具有2路UART和1路SPI接口。与其他类型的微控制器实现相同功能需要多个芯片的组合才能完成相比,C8051F350不仅减少了系 统成本和系统体积,而且大大提高了系统的可靠性。
设计中采用C8051F350的24位Sigma-Delta模/数转换器作系统信号的模数转换,SPI接口作MEMS倾角传感器的温度采集,以实现对传感器的温度补偿,UART作串行LED显示接口。为保证模/数转换器工作稳定,采用外部基准源。
1.5 ADC基准源及传感器电源
MEMS倾角传感器SCA100T在倾角为0°时,模拟输出为其电源电压的1/2倍,如果倾角传感器电源电压有波动,则其输出会产生相应的波 动。因此设计时,将给模数转换电路提供基准源的输出(如图4所示),经过提高驱动能力后,提供给MEMS倾角传感器SCA100T作电源(如图5所示)。 一方面,基准源输出纹波极小,且性能稳定;另一方面,模数转换器的基准源和MEMS倾角传感器SCA100T的电源同时向相同方向变化,抵消了MEMS倾 角传感器因电源引起零点漂移的影响。
图4中的基准源LM236输出的2.5 V电压经过轨对轨运放OPA340组成的跟随电路处理后,增大了驱动能力,既作为模数转换电路的基准源,同时还为差分转换电路提供中心电压,以及MEMS倾角传感器SCA100T的电源输入。
图5中的输入为图4中的参考电压(VREF)输出。以低漂移、高稳定性运放OPA340组成的运放电路给倾角传感器SCA100T提供电源,能保证电源纹波小,工作稳定。
2 信号的数学处理
2.1
C8051F350内部有具有2个独立的抽取滤波器(SINC3滤波器和快速滤波器)和1个可编程增益
SCA100t MEMS SoC 倾角传感器 倾角测量系统 相关文章:
- 基于ARM与MEMS器件的微惯性测量装置设计(05-04)
- 对嵌入式处理技术发展远景的设想(09-11)
- 基于多MEMS传感器的姿态测量系统(10-21)
- 基于AT89S52的MEMS陀螺信号采集与处理系统设计(10-09)
- 基于ARM与MEMS的AHRS设计(04-22)
- EP7212处理器的LCD控制及触摸屏接口设计(10-25)