微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 嵌入式多参数微小型水质监测系统的设计

嵌入式多参数微小型水质监测系统的设计

时间:03-02 来源:电子技术应用 点击:

本系统采用三星公司生产的ARM9芯片S3C2440A作为处理器,它是一款低功耗的32位处理器。系统选用的光谱仪为重庆大学微系统研究中心自主研发的微型光谱仪,光谱范围330 nm~780 nm,光谱带宽≤2 nm,波长准确性+0.9,分辨率≤2 nm,符合系统的要求。GPRS模块采用西门子公司生产的MC35I,该模块支持GPRS Class 8级以及短信功能。

3 系统的软件设计和数据处理

多参数微小型水质监测系统的软件设计由参数标定部分、参数吸光度值采集和处理、GPRS无线传输和控制部分组成。

3.1 参数标定及吸光度值采集和处理的设计

参数的标定是基于朗-伯比尔定律和仪器的系统误差考虑的。在每次测量之前要进行参数的标定,首先是设置光谱仪的参数即积分时间和参考电压,接着ARM系统向单片机系统发送命令,单片机系统控制各个机构。测试第一个参数,ARM系统控制光谱仪从中读取该参数的吸光度值,并存储在FLASH中,直至第七个参数测试完毕。此时,处理器根据存储的数据作出7条标定曲线,并显示在LCD上。在采集被测溶液的参数吸光度值时,步骤和参数标定基本相同,只是在最后使用标定曲线计算出该参数的浓度值。参数标定及吸光度值采集和处理流程如图3所示。

系统测试时可能会存在随机误差,由误差理论可知,当测量次数无限增大时,随机误差趋向于零,测量的算术平均值趋向于真值。但当n>10以后,算术平均值的标准差变化缓慢,因此,测试10次数据比较适中[4]。从图3的流程图中可以看出,系统标定和测试都是10次测量,所以本系统已从软件设计考虑,减少了系统的随机误差。

3.2 GPRS无线传输和控制设计

GPRS无线传输和控制的实现是通过GPRS的收发短信实现的。在使用GPRS网络传输时,首先利用PPP拨号,使GPRS模块和GPRS网络的网关支持节点GGSN建立一条逻辑通路,从而实现与Internet的无线连接,连接完成之后就可以实现短信的收发[5、6]。本系统设置了一些可以供远程管理员进行远程控制的指令,在短信接收阶段,ARM系统通过判断接收的短信内容是回复内容还是远程控制。如果回复内容是1,则说明PC机端已经收到发送的数据;如果回复内容是3,则说明PC机端没有收到发送的数据,继续重发;如果回复内容是2,则说明PC机端向ARM系统发送命令,这样就可以使测试人员不在现场时也能进行实时测试。图4为GPRS短信收发流程图。

在以上设计基础上,对样机的各个模块进行了加工、装配和联合调试,并且用触摸屏控制各个系统进行了综合调试。测试结果显示,各个机构的控制精度很高且工作速度也符合设计要求。光谱仪采集数据和GPRS模块远程传输控制正常,系统运行状态较好,整机工作稳定。

多参数微小型水质监测系统采用了嵌入式技术和 GPRS技术进行设计开发,有效实现了对环境水样中的铬、铅、A表面活性剂、化学耗氧量(COD)、氨氮、总磷和挥发酚的实时检测与远程监测,与目前国内外同类水质监测系统相比具有体积小、可靠性高、效率高、成本低、功耗低、实时监控等特点。不仅保证了监控人员能够及时准确地收到多参数微型水质监测系统发送的水质数据,而且保证了多参数微型水质监测系统也能够及时收到监控人员的反馈信息,使用者和监控中心能做到实时通信,从而实现了真正的实时监测,具有良好的应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top